
4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 1/16

News and updates from the Project Zero team at Google

Project ZeroProject Zero

T h u r s d a y , J a n u a r y 1 4 , 2 0 2 1

Hunting for Bugs in Windows Mini-Filter Drivers

Posted by James Forshaw, Project Zero

In December Microsoft fixed 4 issues in Windows in the Cloud Filter and Windows Overlay Filter (WOF)
drivers (CVE-2020-17103, CVE-2020-17134, CVE-2020-17136, CVE-2020-17139). These 4 issues were 3
local privilege escalations and a security feature bypass, and they were all present in Windows file system
filter drivers. I’ve found a number of issues in filter drivers previously, including 6 in the LUAFV driver which
implements UAC file virtualization.

 The purpose of a file system filter driver according to Microsoft is:
“A file system filter driver can filter I/O operations for one or more file systems or file system volumes.
Depending on the nature of the driver, filter can mean log, observe, modify, or even prevent. Typical
applications for file system filter drivers include antivirus utilities, encryption programs, and hierarchical
storage management systems.”

What this boils down to is the filter driver can inspect and modify almost any IO request sent to a file system.
This power comes with many responsibilities, and considering the complexity of the IO model on Windows it
can be hard to avoid introducing subtle bugs.

With the issues being fixed I thought would be a good opportunity to go into a bit more detail on how you can
research file system filter drivers, specifically the kind of things I looked at to find my security vulnerabilities.
I’m going to give an overview of how filter drivers work, how you communicate with them, some hints on
reverse engineering and some of the common security issues you might discover. I’ll also provide some
basic example code to give you a basic idea of some common coding patterns. The goal is to allow you to do
your own research in this area.

I’m assuming you have some prior knowledge on how the IO Manager works and have experience in finding
security issues in non-filter drivers. Also I’m not claiming this to be an exhaustive description of bug hunting
in filter drivers as the topic is very deep and complex. With this in mind let’s start with an overview of how a
filter driver works.

A filter driver exploits the way the Windows IO Manager implements file system drivers. When you make a
request to access a file, such as calling the NtCreateFile system call the IO Manager allocates an IO
Request Packet (IRP) structure which contains the operation type and all the parameters for the operation.
The IRP is then dispatched to the top of the device stack associated with the request.

Filter Driver Implementation

Search

Search This Blog

About Project Zero
Working at Project Zero
0day "In the Wild"
0day Exploit Root Cause Analyses
Vulnerability Disclosure FAQ

Pages

Archives

More Create Blog Sign In

https://googleprojectzero.blogspot.com/
https://bugs.chromium.org/p/project-zero/issues/detail?id=2086
https://bugs.chromium.org/p/project-zero/issues/detail?id=2084
https://bugs.chromium.org/p/project-zero/issues/detail?id=2082
https://bugs.chromium.org/p/project-zero/issues/detail?id=2088
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/about-file-system-filter-drivers
https://googleprojectzero.blogspot.com/p/about-project-zero.html
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.github.io/0days-in-the-wild/rca.html
https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-faq.html
https://www.blogger.com/
https://www.blogger.com/home#create
https://www.blogger.com/

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 2/16

A filter driver registers for the IO requests it supports with a callback function which is invoked when a
specific IO request type IRP is queued in the device stack. The driver callback can then do a number of
different things to the IRP.

● Pass the IRP unmodified directly to the next driver in the stack.
● Modify the IRP then pass to the next driver.
● Modify the IRP response.
● Complete the IRP operation with a success result.
● Complete the IRP operation with an error result.
● Pass the IRP to a different device stack.

This is the basics of how a filter driver works, the driver is attached at a suitable point of a device stack and
handles IO requests. When an IRP of interest is received it can perform one of the operations to filter
requests. If it wants to inspect or modify the response it can register for the completion routine and handle
the operation in the callback.

It’s important to note that the IRP doesn’t automatically propagate down the stack. A driver can choose to
complete the IRP which means it’ll not be processed by any other driver down the stack. If the driver passes
on the IRP the driver must register a completion routine otherwise it’ll not be notified when the IRP has been
processed by the lower drivers in the stack.

For a file system filter the insertion point would typically be on top of the file system device object which is
exposed by a file system driver such as NTFS. However, the driver can insert itself almost anywhere,
allowing it to filter not just file system requests but also change data such as disk sectors. For example the
Bitlocker Full Disk Encryption driver is a filter which is attached to the top of a volume block device. Any
sectors passed in a write IRP are encrypted before passing to the lower driver. Read IRPs are handled in a
completion routine and the sectors are decrypted before returning to the caller.

Implementing a filter driver from scratch is quite complicated. You have to handle every single IO request
type, even if you don’t care about it, so that it can be forwarded to the next driver in the stack. You also have
to find the correct point to insert your filter driver into the device stack. It’s easy to attach a driver to the top of
the stack but trying to insert in the middle of an existing stack can be a recipe for disaster, for example the
ordering of the filter drivers in the stack might differ depending on load order.

To make it easier to write a filter driver Windows comes with the Filter Manager Driver which takes care of
handling IO requests and device stacks. This allows a developer to write what’s called a mini-filter driver
instead of a, now named, legacy filter driver. The following diagram shows how the architecture changes
when you introduce the filter manager.

The Filter Manager and Mini-Filters

https://1.bp.blogspot.com/-ft1Qb-E9rrA/X_9xlhIu_EI/AAAAAAAAaog/B0AV8WsW5wQrUX17mHfM11ku8zUik-7xwCNcBGAsYHQ/s653/Device%2BStack.png
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts#:~:text=The%20filter%20manager%20is%20a,in%20file%20system%20filter%20drivers.&text=The%20filter%20manager%20is%20installed,a%20minifilter%20driver%20is%20loaded.

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 3/16

As you can see the mini-filters don’t add their own device objects to the stack. Instead they are registered
with the filter manager and it’s the filter manager which inserts its own device. The filter manager handles the
IO requests and calls registered mini-filters to process the request. If your mini-filter doesn’t support a certain
IO request then the filter manager implements a default which handles passing the IRP on to the next driver
in the stack.

Another useful feature is the filter manager implements a mechanism for ordering the mini-filters, through an
altitude value. The higher the altitude value the higher the priority. For example, a filter at altitude 10000 will
be called before a filter at altitude 5000 when making a IO request. When handling responses the altitudes
processed in reverse order, so the filter at 5000 will be called first then the one at 10000. Officially the
altitude values must be registered with Microsoft. MSDN contains a list of the currently registered altitudes.
However, there’s nothing to stop a driver from registering itself with a different altitude except it’ll likely draw
the ire of Microsoft and might fail certification. By formalizing the altitude values you avoid the risk that a filter
driver’s ordering may change depending on load order.

A mini-filter driver registers its presence by calling the FltRegisterFilter filter manager API, normally during
the driver’s entry point. The main parameter is a FLT_REGISTRATION structure which defines all the various
callbacks for handling IO requests and bookkeeping. The important fields are the callbacks which a driver
can register to respond to events from the filter manager. You can view what filters are registered with the
filter manager using the fltmc command line tool (must be run as an administrator).

C:\> fltmc

Filter Name Num Instances Altitude Frame
------------------------------ ------------- ------------ -----
bindflt 1 409800 0
WdFilter 17 328010 0
storqosflt 1 244000 0
wcifs 0 189900 0
CldFlt 0 180451 0
FileCrypt 0 141100 0
luafv 1 135000 0
npsvctrig 1 46000 0
Wof 14 40700 0
FileInfo 17 40500 0

We can see all the mini-filters registered, the number of instances which indicates the number of volumes
that’s been attached and the altitude. There are 19 volumes available for filtering in the system I tested on
(according to running fltmc volumes) so no filter is attached to everything. A driver can select and decide
what volumes it wants to attach to by assigning an instance setup callback to the InstanceSetupCallback
field in the filter registration structure. This callback is invoked for every volume on the system, including new
ones added after the filter starts. The callback can return the status code
STATUS_FLT_DO_NOT_ATTACH to block attachment.

You can view what volumes a filter is attached to using fltmc again:

C:\> fltmc instances -f luafv

Mini-Filter Registration

https://1.bp.blogspot.com/-4xN5FEYoyic/X_9xllA7a3I/AAAAAAAAaok/l8-pMXurJsAmRY6N-2yt_6kPNk9ZnvtXQCNcBGAsYHQ/s820/Mini-Filter%2BDriver.png
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/minifilter-altitude-request
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltregisterfilter
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_registration
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nc-fltkernel-pflt_instance_setup_callback

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 4/16

Instances for luafv filter:

Volume Name Altitude Instance Name Frame VlStatus
------------- ------------ ---------------------- ----- --------
C: 135000 luafv 0

This just shows the volume that LUAFV is attached to. As UAC virtualization only makes sense in the context
of the system drive then it’s only attached to C:. You can manually attach and detach filters on volumes using
the fltmc tool with the attach and detach commands, we’ll show an example of using these commands later.

NOTE: Just because a filter driver is attached to a volume it doesn’t mean it’ll filter any IO requests for that
volume. For example, the WOF driver is attached to all NTFS volumes, however it’ll only enable itself if
there’s at least one file in the volume which is registered to be handled by WOF. Otherwise it ignores the IO
request, letting it complete normally.

Most mini-filters only attach to file system volumes. However, the filter manager also supports attaching to
the named pipe and mailslot devices. The filter driver indicates support by setting the
FLTFL_REGISTRATION_SUPPORT_NPFS_MSFS flag in the FLT_REGISTRATION structure.

By far the most important field in the FLT_REGISTRATION structure is OperationRegistration which
references a list of FLT_OPERATION_REGISTRATION structures defining the IO request callbacks. Each
entry contains the IRP major code for the operation (such as IRP_MJ_CREATE or
IRP_MJ_FILE_SYSTEM_CONTROL) and can have a pre-request and post-request callback. The driver
doesn’t need to specify both if it doesn’t need both. The list is a variable length array, terminated with the
major code being set to IRP_MJ_OPERATION_END (0x80). Any operation not in the list is handled by the
filter manager which typically just ignores it and continues to the next filter in the list. A basic example of
what you might see in C code is shown below.

const FLT_OPERATION_REGISTRATION Callbacks[] = {
 { IRP_MJ_CREATE,
 0,
 PreCreateOperation,
 PostCreateOperation },
 { IRP_MJ_OPERATION_END }
};

A pre-request callback accepts three parameters:

● The parameters for the operation, specified in a FLT_CALLBACK_DATA structure.
● Related kernel objects, in a FLT_RELATED_OBJECTS structure.
● An output pointer which can be assigned a callback context.

The prototype of the callback function pointer is:

typedef FLT_PREOP_CALLBACK_STATUS
(*PFLT_PRE_OPERATION_CALLBACK) (
 PFLT_CALLBACK_DATA Data,
 PCFLT_RELATED_OBJECTS FltObjects,
 PVOID *CompletionContext
);

The parameters for the IO request are accessible in the FLT_CALLBACK_DATA structure’s Iopb field which
is an FLT_IO_PARAMETER_BLOCK structure. The parameters are similar to the ones exposed through the
IRP’s current IO_STACK_LOCATION structure. The data parameter also contains the
IO_STATUS_BLOCK for the request and the caller’s requestor mode (either KernelMode or UserMode). The
return code from the pre-request callback function determines what the filter driver wants to do with the
request. The return type FLT_PREOP_CALLBACK_STATUS can be one of the following:

Name Value Description

FLT_PREOP_SUCCESS_WITH_CALLBACK 0 The callback was successful. Pass on
the IO request and get a post-
operation callback after completion.

FLT_PREOP_SUCCESS_NO_CALLBACK 1 The callback was successful. Pass on
the IO request. No callback required.

FLT_PREOP_PENDING 2 Mark the IO operation as pending.

FLT_PREOP_DISALLOW_FASTIO 3 If handling a Fast IO operation, fail it
to force the operation as a normal IO
Request.

FLT_PREOP_COMPLETE 4 The operation has been completed.
Do not pass on the IO request to any

Mini-Filter IO Request Operation Callbacks

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_operation_registration
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nc-fltkernel-pflt_pre_operation_callback
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_callback_data
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_related_objects
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_io_parameter_block
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_stack_location
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_status_block

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 5/16

other drivers, even other filters in the
stack.

FLT_PREOP_SYNCHRONIZE 5 Synchronize the post-operation
callback in the same thread.

FLT_PREOP_DISALLOW_FSFILTER_IO 6 Disallow FastIO file creation.

A post-request callback accepts four parameters:

● The parameters for the operation, specified in a FLT_CALLBACK_DATA structure.
● Related kernel objects, in a FLT_RELATED_OBJECTS structure.
● A context pointer which could have been assigned by the pre-operation callback.
● Additional flags.

For post-operation callbacks the prototype is as follows:

typedef FLT_POSTOP_CALLBACK_STATUS
(*PFLT_POST_OPERATION_CALLBACK) (
 PFLT_CALLBACK_DATA Data,
 PCFLT_RELATED_OBJECTS FltObjects,
 PVOID CompletionContext,
 FLT_POST_OPERATION_FLAGS Flags
);

The parameters are more or less the same as for the pre-operation callback. The CompletionContext
parameter is the same one assigned in the pre-operation callback. If this value was allocated the post-
operation callback needs to free the memory buffer to prevent leaking memory. The
FLT_POSTOP_CALLBACK_STATUS return type can be one of the following values.

Name Value Description

FLT_POSTOP_FINISHED_PROCESSING 0 The callback was successful.
No further processing required.

FLT_POSTOP_MORE_PROCESSING_REQUIRED 1 Halts completion of the IO
request. The operation will be
pending until the filter driver
completes it.

FLT_POSTOP_DISALLOW_FSFILTER_IO 2 Disallow FastIO file creation.

Now that we’ve described registration of the mini-filter and its callbacks let's go through a few examples of
how IO requests are handled inside the pre and post operation callbacks. We’ll use the six operations I
mentioned earlier as a base for this discussion. Any examples are to demonstrate the likely code you’ll find
in a driver but omits security checks and other unimportant details. This isn’t Stack Overflow, so please don’t
copy and paste them into real drivers.

The simplest way of not modifying an IO request is to not specify a pre-operation callback. Of course we’re
assuming the driver wants to handle an IO request selectively based on certain criteria so it must implement
the callback.

The easiest way to ignore the IO request is to return the FLT_PREOP_SUCCESS_NO_CALLBACK status
code from the pre-operation callback. That indicates to the filter manager that the mini-filter has completed
its processing and is no longer interested in the IO request.

To give an example the following pre-create operation callback will ignore any open requests where the
desired access does not request the FILE_WRITE_DATA access right. If the request doesn’t contain the
access then the request is completed with no callback.

FLT_PREOP_CALLBACK_STATUS
PreCreateOperation(
 PFLT_CALLBACK_DATA Data,
 PCFLT_RELATED_OBJECTS FltObjects,
 PVOID* CompletionContext
) {
 PFLT_IO_PARAMETER_BLOCK ps = &Data->Iopb->Parameters;
 DWORD access = ps->Create.SecurityContext->DesiredAccess;
 if ((access & FILE_WRITE_DATA) == 0) {
 return FLT_PREOP_SUCCESS_NO_CALLBACK;
 }

 // Perform some operation...

Handling IO Requests

Pass the IO request unmodified

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nc-fltkernel-pflt_post_operation_callback
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_callback_data
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/ns-fltkernel-_flt_related_objects

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 6/16

}

The example extracts the desired access from the creation parameters. If the FILE_WRITE_DATA access
right is not set then the filter driver will ignore the IO request entirely by returning the no callback status code.

Of course depending on the purpose of the filter driver it might still want the post-operation callback to be
called. For example if the filter driver is monitoring file access then the post-operation callback will contain
valuable information such as the success or failure of opening the file or the data read from the file. In this
case it makes sense to return FLT_PREOP_SUCCESS_WITH_CALLBACK.

When the driver specified it wants a post-operation callback it can configure the CompletionContext with any
value it likes. This context can then be used in the post-operation callback. This can be used to pass
additional data between the callbacks so that it can perform its operation correctly.

During a pre-operation callback the driver can modify the contents of the FLT_CALLBACK_DATA structure.
For example the driver could change the security context used to open the file or it could even change the
name of the file itself. The driver must indicate to the filter manager that the data has been modified by
setting the FLTFL_CALLBACK_DATA_DIRTY flag in the Flags field before returning. The correct way of
setting the flag is to call the FltSetCallbackDataDirty API however all that currently does is set the flag.

As with the request you can modify the response in the post-operation callback which will return the changes
to higher mini-filters and the IO manager. One trick I’ve commonly seen is to use this to change the target file
by modifying the file name and returning the status code STATUS_REPARSE as if the file system hand
encountered a symbolic link. The following is the basic approach that the LUAFV driver uses to perform the
reparse operation to an arbitrary file path in a post-operation callback.

FLT_POSTOP_CALLBACK_STATUS LuafvReparse(PFLT_CALLBACK_DATA Data,
 PUNICODE_STRING TargetFileName){
 LuafvSetEcp(Data, TargetFileName);
 PFILE_OBJECT FileObject = Data->Iopb->TargetFileObject;
 ExFreePool(FileObject->FileName.Buffer);
 FileObject->FileName.Buffer = ExAllocatePool(PagedPool,
 TargetFileName.Length);
 FileObject->FileName.MaximumLength = TargetFileName.Length;
 RtlCopyUnicodeString(&FileObject->FileName, TargetFileName);
 Data->IoStatus.Information = 0;
 Data->IoStatus.Status = STATUS_REPARSE;
 FltSetCallbackDataDirty(Data);
 return FLT_POSTOP_FINISHED_PROCESSING;
}

The code deallocates the filename buffer in the target file object and replaces it with its own. It then sets the
status code to STATUS_REPARSE and indicates that processing has finished. In Windows 7 a
IoReplaceFileObjectName API was introduced which makes this operation much less error prone, however
LUAFV was written for Vista where the API didn’t exist so it had to make do. An official Microsoft example
can be found in the SimRep sample driver.

One quirk of this operation is the FileName in the file object is volume relative, e.g. if you opened
c:\windows\notepad.exe then FileName is set to \windows\notepad.exe. However, you can replace that with
an absolute path such as \??\d:\abc.txt and that still works. Also the driver doesn’t need to create a real
mount point or symbolic link reparse point buffer for this to work. The IO manager will just take the path from
the file object and restart the create request with the new path.

The driver can immediately complete an IO request by returning FLT_PREOP_COMPLETE from a pre-
operation callback and updating the IO_STATUS_BLOCK in the FLT_CALLBACK_DATA parameter. The
previous reparse example shows how that update works. If you’re only updating the
IO_STATUS_BLOCK you don’t need to mark the data as dirty.

Higher level filter drivers will still get their post-operation callbacks invoked if they’re registered for them,
however no lower altitude drivers will be called with the IO request.

This is basically the same as for a success code, just specifying a different NT status. There’s nothing
stopping a higher level filter driver from ignoring the error code and replacing it with a success.

Modify the IO request

Modify the IO request response

Complete the IO request with a success result

Complete the IO request with an error result.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltsetcallbackdatadirty
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ioreplacefileobjectname
https://github.com/microsoft/Windows-driver-samples/blob/master/filesys/miniFilter/simrep/simrep.c

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 7/16

The filter driver can redirect the operation to another device stack. For example you could implement a driver
which redirects file reads and writes to a completely different file on the disk, making it look like the user is
modifying the file when they’re not.

The most obvious way of achieving this would be to open the new file during the pre-create operation then
use that file object as the target for all subsequent operations. There are two potential issues with this
approach.

First, how can a filter driver interact with a file system volume it’s attached to without resulting in an infinite
loop? For example, if the driver wants to open a file it can call IoCreateFile (and variants). However, the IO
manager would dispatch the IO request to the top of the device stack, which would get back to the filter
manager which could end up calling the filter driver again, ad infinitum. The same would be the case with
any exported APIs from the kernel.

This issue is solved through two mechanisms. The first is the filter manager exposes a set of APIs which
mirror the kernel IO APIs but will only dispatch the IO request to filters below the caller. For example you can
call FltCreateFileEx or FltWriteFile and be sure you won’t end up in a loop.

For file creation requests the driver can also employ a second mechanism called Extra Create Parameters
(ECP). An ECP is a GUID along with additional data which can be attached to the create request using the
FltInsertExtraCreateParameter API. The filter driver can attach the ECP to the request, then check for its
presence using FltFindExtraCreateParameter API, allowing it to ignore the request. For example the earlier
code which shows how LUAFV implements a reparse operation shows calling LuafvSetEcp which sets an
ECP on the request so that the new create request can be ignored by the driver.

The second issue is how do you actually pass on the parameters for the IO request to the new file you’ve
opened? The naive approach would be to extract the parameters then invoke the corresponding filter
manager API. For example, for a write IO request, read out the buffer and length then call FltWriteFile. This
is error prone and might introduce subtle security issues.

A better approach is the driver can change the TargetFileObject field in the pre-operation callback’s
FLT_IO_PARAMETER_BLOCK structure then return a success code for the IO request to continue. This will
cause the filter manager to send the original IO request to the new file object. The following is a simple
example which could be in a pre-operation callback which will redirect the request to a file object extracted
from the file system context:

PREDIRECT_CONTEXT context = // Get driver’s allocated context.
if (context->FileObject) {
 Data->Iopb->TargetFileObject = context->FileObject;
 FltSetCallbackDataDirty(Data);
 return FLT_PREOP_SUCCESS_NO_CALLBACK;
}

For there to be a security vulnerability the driver must process some untrustworthy data from a malicious
user. What makes mini-filter drivers interesting is there's multiple places where untrusted data can be
processed. Let’s go through the ways of identifying and analyzing these communication channels.

A mini-filter doesn’t need to create any device object to perform its function, the filter manager deals with
creating any necessary device objects. That doesn’t mean the driver can’t create one for its own purposes. A
typical attack vector is the malicious user opens a handle to the device object and sends device IO control
codes to exercise the vulnerable behavior.

I’m not going to go into details about how to analyze Windows kernel drivers for security issues in the IRP
dispatch callbacks, as there’s plenty of other resources. For example: Reverse Engineering and Bug Hunting
on KMDF Drivers (video, slides).

One unique communication mechanism which is implemented by the filter manager is Filter Communication
Ports. A port can be created by a mini-filter driver by calling the exported filter manager API
FltCreateCommunicationPort.

PSECURITY_DESCRIPTOR SecurityDescriptor;

FltBuildDefaultSecurityDescriptor(
 &SecurityDescriptor,

Pass the IO request to a different file or device stack

Mini-Filter Communication

Device Object

Filter Communication Ports

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatefile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltcreatefileex
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltwritefile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltinsertextracreateparameter
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltfindextracreateparameter
https://www.youtube.com/watch?v=puNkbSTQtXY
https://ioactive.com/wp-content/uploads/2018/09/Reverse_Engineering_and_Bug_Hunting_On_KMDF_Drivers.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltcreatecommunicationport

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 8/16

 FLT_PORT_ALL_ACCESS
);

UNICODE_STRING Name;
RtlInitUnicodeString(&Name, L"\\FilterPortName");

OBJECT_ATTRIBUTES ObjAttr;
InitializeObjectAttributes(&ObjAttr, &Name, 0, NULL, SecurityDescriptor);

PFLT_PORT Port;
FltCreateCommunicationPort(
 Filter,
 &Port,
 &ObjAttr,
 NULL,
 ConnectNotifyCallback,
 DisconnectNotifyCallback,
 MessageNotifyCallback,
 100
);

The name of the port is specified using an OBJECT_ATTRIBUTES structure, in this example the filter port
will be called \FilterPortName in the Object Manager Namespace (OMNS). The driver should also specify the
security descriptor to be associated with the port through the OBJECT_ATTRIBUTES. It’s most common to
call the FltBuildDefaultSecurityDescriptor API to build a security descriptor which only grants administrators
access to the port. However, the driver can configure the security any way it likes.

In FltCreateCommunicationPort the filter manager creates a new named kernel object of type
FilterConnectionPort with the OBJECT_ATTRIBUTES and associates it with the callbacks. There’s no
NtOpenFilterConnectionPort system call to open a port. Instead when a user wants to access the port it must
first open a handle to the filter manager message device object, \FileSystem\Filters\FltMgrMsg, passing an
extended attributes structure identifying the full OMNS path to the port.

It is much easier to open a port by calling the FilterConnectCommunicationPort API in user-mode, so you
don’t need to deal with connecting manually. When opening a port you can also specify an arbitrary context
buffer to pass to the connect callback. This can be used to configure the open port instance. On connection
the connect notification callback passed to FltCreateCommunicationPort will be called. The prototype for the
callback is as follows:

typedef NTSTATUS
(*PFLT_CONNECT_NOTIFY) (
 PFLT_PORT ClientPort,
 PVOID ServerPortCookie,
 PVOID ConnectionContext,
 ULONG SizeOfContext,
 PVOID *ConnectionPortCookie
);

The ConnectionContext and SizeOfContext are values passed from user-mode when calling
FilterConnectCommunicationPort. The ConnectionContext has its length verified and copied into kernel
memory before use. However, there’s no structure for the context so the driver must still carefully verify its
contents before using it. The driver can reject a caller by returning an error NT status code. This allows the
driver to do things like verify the caller is in a signed binary or similar, which is likely something security
products will do.

If the connection is allowed the ConnectionPortCookie pointer can be updated with a pointer to an allocated
structure unique to the client. This pointer will be passed back to the driver in the message and disconnect
notification callbacks.

You can enumerate what ports are currently registered by inspecting the OMNS. For example, to enumerate
the ports in the root of the OMNS using my NtObjectManager PowerShell module run the following
command:

PS> ls NtObject:\ | Where-Object TypeName -eq "FilterConnectionPort"
Name TypeName
---- --------
storqosfltport FilterConnectionPort
MicrosoftMalwareProtectionRemoteIoPortWD FilterConnectionPort
MicrosoftMalwareProtectionVeryLowIoPortWD FilterConnectionPort
WcifsPort FilterConnectionPort
MicrosoftMalwareProtectionControlPortWD FilterConnectionPort

https://docs.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-_object_attributes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltbuilddefaultsecuritydescriptor
https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterconnectcommunicationport
https://www.powershellgallery.com/packages/NtObjectManager/1.1.29

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 9/16

BindFltPort FilterConnectionPort
MicrosoftMalwareProtectionAsyncPortWD FilterConnectionPort
CLDMSGPORT FilterConnectionPort
MicrosoftMalwareProtectionPortWD FilterConnectionPort

You might notice there is also a FilterCommunicationPort kernel object type. This is the object used for the
client-end where FilterConnectionPort is the mini-filter server end. You should never see a
FilterCommunicationPort named object in the OMNS.

When the port is opened the kernel will check the security descriptor for access. Unfortunately there’s no
way to directly query the assigned security descriptor for a port from user-mode. The simplest way to test is
to just try and open the port and see if it returns an access denied error.

PS> $ports = ls NtObject:\ |
Where-Object TypeName -eq "FilterConnectionPort"
PS> foreach($port in $ports.Name) {
 Write-Host "\$port"
 Use-NtObject($p = Get-FilterConnectionPort "\$port") {}
}
\BindFltPort
Exception: "(0x80070005) - Access is denied."

\CLDMSGPORT
Exception: "(0x8007017C) - The cloud operation is invalid."

We can see two ports output in the previous code snippet. The BindFltPort port fails with an access denied
error, while the CLDMSGPORT port (which is part of the Cloud Filter driver) returns “The cloud operation is
invalid.”. The second error indicates that we’ve likely opened the port, but you’ll need to supply specific
parameters in the context buffer when calling the FilterConnectCommunicationPort API. You can specify the
connection context for the Get-FilterConnectionPort command by specifying a byte array to the
Context parameter.

PS> $port = Get-FilterConnectionPort -Path "\PORT" -Context @(0, 1, 2, 3)

We can inspect the security descriptor for a port if you’ve got a Windows system with a kernel debugger
enabled and a copy of WinDBG.

0: kd> !object \CLDMSGPORT
Object: ffffb487447ff8c0 Type: (ffffb4873d67dc40) FilterConnectionPort
 ObjectHeader: ffffb487447ff890 (new version)
 HandleCount: 1 PointerCount: 4
 Directory Object: ffff8a8889a2d4e0 Name: CLDMSGPORT

0: kd> dx (((nt!_OBJECT_HEADER*)0xffffb487447ff890)->SecurityDescriptor
& ~0x7)
(((nt!_OBJECT_HEADER*)0xffffb487447ff890)->SecurityDescriptor & ~0x7) :
0xffff8a888dccb0a0
0: kd> !sd 0xffff8a888dccb0a0 1
->Revision: 0x1
->Sbz1 : 0x0
->Control : 0x9004
 SE_DACL_PRESENT
 SE_DACL_PROTECTED
 SE_SELF_RELATIVE
->Owner : S-1-5-32-544 (Alias: BUILTIN\Administrators)
->Group : S-1-5-18 (Well Known Group: NT AUTHORITY\SYSTEM)
->Dacl :
->Dacl : ->AclRevision: 0x2
->Dacl : ->Sbz1 : 0x0
->Dacl : ->AclSize : 0x1c
->Dacl : ->AceCount : 0x1
->Dacl : ->Sbz2 : 0x0
->Dacl : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : ->Ace[0]: ->AceFlags: 0x0
->Dacl : ->Ace[0]: ->AceSize: 0x14
->Dacl : ->Ace[0]: ->Mask : 0x001f0001
->Dacl : ->Ace[0]: ->SID: S-1-5-11 (Well Known Group: NT
AUTHORITY\Authenticated Users)

->Sacl : is NULL

To dump the SD you first query for the object address of the filter communication port using the
!object command. From the output you take the address of the OBJECT_HEADER structure and query the
SecurityDescriptor field. Note you must clear the lower 3 bits of the address to make a valid security
descriptor pointer. Finally we can print the security descriptor using the !sd command. The output shows that
the security descriptor grants the Authenticated Users group access to connect to the port.

With an open handle to the port you can now send and receive messages. The filter manager supports both
user to kernel and kernel to user message directions. For the user to kernel messages you call the
FilterSendMessage API which sends a raw memory buffer to the filter driver and returns a separate buffer as
shown in the following prototype:

https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filtersendmessage

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 10/16

HRESULT FilterSendMessage(
 HANDLE hPort,
 LPVOID lpInBuffer,
 DWORD dwInBufferSize,
 LPVOID lpOutBuffer,
 DWORD dwOutBufferSize,
 LPDWORD lpBytesReturned
);

The message is delivered to the filter driver’s message notification callback specified when registering the
mini-filter. The callback has the following prototype.

typedef NTSTATUS
(*PFLT_MESSAGE_NOTIFY) (
 IN PVOID PortCookie,
 IN PVOID InputBuffer OPTIONAL,
 IN ULONG InputBufferLength,
 OUT PVOID OutputBuffer OPTIONAL,
 IN ULONG OutputBufferLength,
 OUT PULONG ReturnOutputBufferLength
);

The handling of the message is similar to a device IO control call. In fact under the hood it’s implemented
using the device IO control code 0x8801B. As this code uses the METHOD_NEITHER method means the
InputBuffer and OutputBuffer parameters are pointers into user-mode memory. The filter manager does
check them before calling the callback with ProbeForRead and ProbeForWrite calls.

You can send a message to a filter connection port in PowerShell using the Send-
FilterConnectionPort command specifying the data to send and the maximum size of the output buffer.

PS> Send-FilterConnectionPort -Port $port -Input @(0, 1, 2, 3) -
MaximumOutput 0x100

For the kernel to user messages the user mode application needs to call FilterGetMessage to wait for the
filter driver to send a message to user-mode. The kernel sends a message to the waiting user mode
application using the FltSendMessage API which has the following prototype.

NTSTATUS FltSendMessage(
 PFLT_FILTER Filter,
 PFLT_PORT *ClientPort,
 PVOID SenderBuffer,
 ULONG SenderBufferLength,
 PVOID ReplyBuffer,
 PULONG ReplyLength,
 PLARGE_INTEGER Timeout
);

If there’s currently no waiting user mode process the API can wait a specified timeout until the application
called FilterGetMessage. The returned buffer from FilterGetMessage contains a
FILTER_MESSAGE_HEADER structure followed by the data. The header contains the size of the reply
requested as well as a message ID which is used to correlate any reply to the kernel’s message.

To reply the user-mode application calls the FilterReplyMessage API. The user-mode application needs to
append any data to a FILTER_REPLY_HEADER structure which contains the NT status code of the
operation and the correlated message ID. The FltSendMessage API waits for the user-mode application to
call FilterReplyMessage with the correct ID, and returns a buffer to the kernel-mode code. The message
notification callback is not involved when using kernel to user-mode calls.

Typically the purpose of the mini-filter callbacks would be to inspect or modify pre-existing IO requests to a
file system. Therefore one way of getting untrusted data to the driver is based on how it handles IO requests.
 However, it’s possible to add additional functionality on top of an existing file system to allow for
communication between user mode and kernel mode. The filter driver can add a callback for device or file
system IO control code requests and check and handle its own control codes. This allows the filter to
implement additional functionality on existing files.

The following is a simple example of adding a FSCTL_REVERSE_BYTES FS IO control code to an existing
file system. This FSCTL is not really supported by any filesystem.

#define FSCTL_REVERSE_BYTES CTL_CODE(FILE_DEVICE_FILESYSTEM,

Filter Callbacks

https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filtergetmessage
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltsendmessage
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltuserstructures/ns-fltuserstructures-_filter_message_header
https://docs.microsoft.com/en-us/windows/win32/api/fltuser/nf-fltuser-filterreplymessage
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltuserstructures/ns-fltuserstructures-_filter_reply_header

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 11/16

 0x801,
 METHOD_BUFFERED,
 FILE_ANY_ACCESS)

FLT_PREOP_CALLBACK_STATUS
PreFsControlOperation(
 PFLT_CALLBACK_DATA Data,
 PCFLT_RELATED_OBJECTS FltObjects,
 PVOID* CompletionContext
) {
 PFLT_PARAMETERS ps = &Data->Iopb->Parameters;
 if (ps->DeviceIoControl.Common.IoControlCode != FSCTL_REVERSE_BYTES) {
 return FLT_PREOP_SUCCESS_NO_CALLBACK;
 }

 char* buffer = ps->DeviceIoControl.Buffered.SystemBuffer;
 ULONG length = min(ps->DeviceIoControl.Buffered.InputBufferLength,
 ps->DeviceIoControl.Buffered.OutputBufferLength);
 for (ULONG i = 0; i < length; ++i)
 {
 char tmp = buffer[i];
 buffer[i] = buffer[length - i - 1];
 buffer[length - i - 1] = tmp;
 }
 Data->IoStatus.Status = STATUS_SUCCESS;
 Data->IoStatus.Information = length;
 return FLT_PREOP_COMPLETE;
}

The parameters for the FSCTL or IOCTL are separated based on the method of buffer access. In this case
the FSCTL uses METHOD_BUFFERED so the parameters are accessed through the Buffered field. The
filter driver needs to ensure it handles correctly all buffer types if it wants to implement its own control codes.

This technique is used by the Windows Overlay Filter (WOF). For example, the FSCTL code
FSCTL_SET_EXTERNAL_BACKING is not supported by NTFS. Instead it’s intercepted by a pre-operation
callback in the WOF filter which completes it before it reaches the NTFS driver. The NTFS driver never sees
the control code, unless the WOF driver happens to not be enabled.

Reparse point buffers are most commonly known for implementing symbolic link support for NTFS. However
the reparse point feature of NTFS can store arbitrary tagged data which is used by filter drivers to store
additional offline state information for a file. For example, WOF uses its own reparse buffer, with the tag
IO_REPARSE_TAG_WOF to store the location of the real file or status of a compressed file.

A user-mode application would set, query and delete using FSCTL control codes, such as
FSCTL_SET_REPARSE_POINT. The recommended way a mini-filter driver should set and delete a file’s
reparse buffer is through the FltTagFile (and FltTagFileEx) and FltUntagFile APIs to set and remove the
reparse buffer. Searching for the driver’s imported APIs should quickly show whether the driver uses its own
reparse buffer format.

To open a file with the supported reparse point buffer the driver could register for the post-create callback
and wait for any request which returns the STATUS_REPARSE NT status then query for the reparse point
data from the TagData field in the FLT_CALLBACK_DATA parameter. If the reparse tag matches one the
filter driver supports it can re-issue the create request but specify the FILE_OPEN_REPARSE_POINT flag to
open the file and ignore the reparse point. There are many problems with this, not least it requires two IO
requests for a single creation and the driver would have to process every reparse event.

To simplify this Windows 10 supports the ECP_TYPE_OPEN_REPARSE_GUID ECP. You add the ECP with
a buffer containing an OPEN_REPARSE_LIST_ENTRY structure which defines the reparse tag the driver
handles. When NTFS encounters a reparse point buffer it checks to see if it’s in the open reparse list. If so
instead of returning STATUS_REPARSE the OPEN_REPARSE_POINT_TAG_ENCOUNTERED flag is set in
the OPEN_REPARSE_LIST_ENTRY structure, the file is opened and success NT status code is returned.
The filter driver can then check for the flag in the post-create callback, if set it can query the reparse tag from
the file, for example using FSCTL_GET_REPARSE_POINT and handle accordingly.

The filter manager also exposes the FltAddOpenReparseEntry and FltRemoveOpenReparseEntry to simplify
adding and removing these open reparse list entries. Searching for use of these APIs should give you an
idea if the filter driver implements its own reparse point format.

The reason I mention this in the context of communication is that a filter driver will process these reparse
buffers when accessing the file system. The NTFS driver only checks for the SeCreateSymbolicLinkPrivilege

Reparse Points

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/fsctl-set-external-backing
https://docs.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_set_reparse_point
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-flttagfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-flttagfileex
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltuntagfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/ns-ntifs-_open_reparse_list_entry
https://docs.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_get_reparse_point
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltaddopenreparseentry
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/fltkernel/nf-fltkernel-fltremoveopenreparseentry

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 12/16

privilege if a user is writing the IO_REPARSE_TAG_SYMLINK tag. NTFS delegates the verification of the
REPARSE_DATA_BUFFER structure which will be written to the file system by calling the kernel API
FsRtlValidateReparsePointBuffer. The kernel API only does basic length checks for non-symlink tag types so
the arbitrary bytes set in the DataBuffer field can be completely untrusted, which can allow for security issues
during parsing.

I’ve now provided examples of how a mini-filter operates and how you can communicate with it. Let’s finish
up with an overview of potential bug classes to look for when doing a review. Some of these bug classes are
common to any kernel driver, but others are very specifically due to the way mini-filters operate.

Where possible I’ll also provide an example of a vulnerability I’ve discovered to improve understanding.
Note, this is not an exhaustive list, I’m sure there are some novel bug classes that I don’t know about which
are missing from this list. Which is why it’s good to describe this process in more detail so others can take
advantage of my knowledge and find new and interesting issues.

To aid in analysis I’ve uploaded my header file I use in IDA Pro to populate the filter manager types. You can
get it from github. I’ve tried to ensure it’s correct and up to date, but there’s a chance that it is not. YMMV.

Being native C code you can expect the same sorts of issues you’d find in any sizable code base including
integer wrapping and incorrect reference counting leading to memory safety hazards. Any of the described
communication methods could result in untrusted data being processed and mishandled. I don’t think I need
to describe this in any detail.

All filtered IO requests have an assigned RequestorMode parameter in the FLT_CALLBACK_DATA structure
which indicates whether it originated from user or kernel mode code. If an IO request is dispatched from
kernel mode code the IO manager and file system drivers typically disable security checks, such as file
access checking.

There are a couple of related bug classes you’ll see with regards to RequestorMode. The first class is the
filter driver ignoring its value. This can be a problem if the filter driver redirects the IO request to another file
either directly or by using a reparse operation during file creation.

For example, CVE-2018-0877 was an issue I found in the WCIFS driver which provides file system
virtualization for Desktop Bridge applications. The root cause was the driver would reparse to a user
controllable location if the requested file didn’t exist in privileged Windows directories.

It’s common to find kernel code opening files inside privileged directories with RequestorMode set to the
kernel. The kernel code can make the assumption this can’t be tampered with as only an administrator can
normally modify those directories. The end result was a normal user application could get a file opened in the
user controllable location but with access checking disabled. In the proof-of-concept in the issue tracker I
exploit this to redirect a request for a National Language Support (NLS) file to ready arbitrary files on disk
such as the SAM hive. The technique was described separately in this blog post.

The second bug class in checking the RequestorMode can occur during a file create operation. Specifically
the RequestorMode field is checked but the driver does not verify if access checking has been re-enabled
through the IO_FORCE_ACCESS_CHECK flag passed to IoCreateFile and variants. For a bit more context
on this bug class refer to my blog post from last year where I collaborated with Microsoft on related issues.

FLT_PREOP_CALLBACK_STATUS
PreCreateOperation(
 PFLT_CALLBACK_DATA Data,
 PCFLT_RELATED_OBJECTS FltObjects,
 PVOID* CompletionContext
) {
 if (!SeSinglePrivilegeCheck(SeExports->SeTcbPrivilege,
 Data->RequestorMode)) {
 Data->IoStatus.Status = STATUS_ACCESS_DENIED;
 return FLT_PREOP_COMPLETE;
 }

 // Perform some privileged action.

 return FLT_PREOP_SUCCESS_WITH_CALLBACK;
}

Security Bug Classes

Common and garden variety memory safety hazards

Ignoring the RequestorMode Value

Incorrect RequestorMode Check.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/ns-ntifs-_reparse_data_buffer
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-fsrtlvalidatereparsepointbuffer
https://gist.github.com/tyranid/49d8a1b9e53bba4eac40df32e15d4a98
https://bugs.chromium.org/p/project-zero/issues/detail?id=1452
https://googleprojectzero.blogspot.com/2017/08/windows-exploitation-tricks-arbitrary.html
https://googleprojectzero.blogspot.com/2019/03/windows-kernel-logic-bug-class-access.html

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 13/16

The example above shows misuse of the RequestorMode field. It passes it directly to
SeSinglePrivilegeCheck, if it indicates the call came from the kernel then the privilege check will always
return TRUE meaning the privileged action will be taken. If you read the linked blog post, this can happen if
the file is opened through calling IoCreateFileEx or similar APIs with incorrect flags.

To guard against this issue the driver needs to check if the SL_FORCE_ACCESS_CHECK flag has been set in
the OperationFlags field of the FLT_IO_PARAMETER_BLOCK structure. If that flag is set the value of
RequestorMode should always be assumed to be from user mode.

The Windows platform is constantly iterating new features, this is even more true since the release of
Windows 10 and its six month release cycles. This can introduce new features to the IO stack such as new
information classes or IO control codes or additional functionality to existing features.

For the most part the mini-filter driver can just ignore operations it doesn’t care about. However, if it does
process an IO operation it needs to match with what’s implemented in the rest of the OS, which can be
difficult if the OS changes around the driver.

An example of this issue is the WOF driver’s handling of reparse points. To prevent applications from setting
arbitrary reparse points with the IO_REPARSE_TAG_WOF tag it handles the
FSCTL_SET_REPARSE_POINT IO control code and rejects any attempt to set a reparse point buffer with
that tag. To complete the trick the driver also hides a file’s reparse point from being queried or removed if it’s
set to IO_REPARSE_TAG_WOF.

The issue CVE-2020-17139 resulted from the OS adding a new FSCTL_SET_REPARSE_POINT_EX IO
control code which the WOF driver didn’t handle. This allowed an application to add or remove the WOF IO
tag which resulted in a way of getting an arbitrary file to have a cached code signature to bypass
mechanisms such as Windows Defender Application Control.

Sorry, I couldn’t resist the pun. This is a bug class which is caused by the ordering of filter operations based
on the assigned altitudes of the driver. For example, if you look at the list of filters from the fltmc command
shown earlier in this blog post you’ll notice that WdFilter which is the real-time scanner for Windows
Defender is at a much higher altitude than LUAFV which is the UAC file virtualization driver.

What this means is if LUAFV performs some operations, such as calling FltCreateFileEx which only
dispatches the IO request to filters below LUAFV then Windows Defender will miss the file operations and
not be able to act on them. Let’s show this in action with a simple PowerShell script.

function Write-EICAR {
 param([string]$Path)

 # Replace with a real EICAR string.
 $eicar = [System.Text.Encoding]::ASCII.GetBytes("<EICAR>")
 Use-NtObject($f = New-NtFile -Win32Path $Path -Disposition OpenIf -
Access ReadData, WriteData) {
 $f.Length = 0
 Write-NtFile $f $eicar -Offset 0
 }
}

PS> Write-EICAR -Path "$env:TEMP\eicar.txt"
PS> Enable-NtTokenVirtualization
PS> Write-EICAR -Path "$env:windir\system32\license.rtf"

The Write-EICAR function opens or creates a new file at a specified path, truncates the file to a zero length,
writes the EICAR string then closes the file. Note I’ve replaced the EICAR string with the dummy <EICAR>.
You’ll need to look up the real string online and replace it before running the test. I did this to prevent some
overzealous AV detecting the EICAR string and quarantining this web page.

We create an EICAR file in the temporary folder. Once the file has been closed Windows Defender’s real-
time scanner should scan it and warn the user that it has quarantined the file.

Driver and Kernel IO Operation Mismatch

Altitude sickness.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-sesingleprivilegecheck
https://bugs.chromium.org/p/project-zero/issues/detail?id=2088
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/fsctl-set-reparse-point-ex
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 14/16

However, once we enable virtualization using Enable-NtTokenVirtualization and write to an existing system
file the file processing is handled inside the LUAFV driver after WdFilter has done its checking. Therefore the
second command will succeed, although the file which is actually created is in the user’s virtual store, we’ve
not overwritten license.rtf.

Worth pointing out that this only allows you to create the file on disk. The instant that virtualized file is used
by any application Windows Defender will see it and quarantine it. Therefore it provides no real value to
bypass Windows Defender’s signature checks. However, I think this is an interesting demonstration of the
types of issues you could find due to the differing altitudes.

The mismatch with the filter altitude is also a potential reason you’ll miss file events in Process Monitor.
Process Monitor runs its mini-filter to capture file events at altitude 385200 which is above LUAFV. You will
not see most direct virtualization events. However we can do something about this, we can use fltmc to
detach the Process Monitor filter from a volume and reattach at a much lower altitude. Start Process Monitor
then run the following commands to reattach to the C: drive.

C:\> fltmc detach PROCMON24 C:
C:\> fltmc attach PROCMON24 C: -i "Process Monitor 24 Instance" -a 100

You might need to replace 24 with an appropriate version number for your version of Process Monitor. You
should start seeing more events which were previously hidden by LUAFV and other filter drivers at lower
altitudes. This should help you monitor file access for any interesting behavior. Sadly even though you can
try and attach the Process Monitor filter to the named pipe device it won’t work as the driver doesn’t indicate
support for that device.

Note, that stopping and starting the Process Monitor capture will reset the volume instances for the filter
driver and remove the low altitude instance. If you create the new instance without the instance name (the
string after -i) then it won’t get deleted, however Process Monitor will show duplicate entries for any IO
request which is the same at both altitudes. The Process Monitor driver does not support attaching at a
different altitude through any command line options, this would be one of those cases where it’d be useful for
this tooling to be open source so that this feature could be added.

As an example before adding the low altitude instance if you create the EICAR test file you’ll see the
following events:

ID Path Operation Result Detail

0 C:\Windows\System32\license.rtf CreateFile SUCCESS
Desired Access: Read Data,
Write Data

1 C:\Windows\System32\license.rtf SetEndOfFile SUCCESS EndOfFile: 0

2
C:\Users\admin\AppData\Local\VirtualStore
\Windows\System32\license.rtf WriteFile SUCCESS Offset: 0, Length: 68

3
C:\Users\admin\AppData\Local\VirtualStore
\Windows\System32\license.rtf CloseFile SUCCESS

I’ve added an ID column which indicates the event taking place. The events match the code for creating the
EICAR file, we open the file for read and write access, set the length to 0, write the EICAR string and then
close the file. Note that in event ID 2 the path to the file has changed from the original one in system32 to the
virtual store. This is because the file is “delay virtualized” so it’ll only be created if a write IO request, such as
changing the file length, is dispatched to the file.

Now let’s compare the events when the altitude is set to 100:

ID Path Operation Result Detail

0 C:\Windows\System32\license.rtf CreateFile
ACCESS
DENIED

Desired Access: Read Data,
Write Data

C:\Windows\System32\license.rtf CreateFile SUCCESS Desired Access: Read Data

1 C:\Windows\System32\license.rtf CreateFile SUCCESS Desired Access: Read Data,

https://1.bp.blogspot.com/-tLMq6lEXKNM/X_9xluZ7oVI/AAAAAAAAaoc/moryf-kgfIs6Ch3zgrEwPikMez6fqZsQgCNcBGAsYHQ/s462/eicar_quarantine.PNG
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://twitter.com/tiraniddo/status/1284139369788563456

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 15/16

Read Attributes

C:\Users\admin\AppData\Local\VirtualStor
e\Windows\System32\license.rtf CreateFile SUCCESS

Desired Access: Write Data,
Write Attributes

C:\Users\admin\AppData\Local\VirtualStor
e\Windows\System32\license.rtf SetEndOfFile SUCCESS EndOfFile: 538

C:\Windows\System32\license.rtf ReadFile SUCCESS Offset: 0, Length: 538

C:\Users\admin\AppData\Local\VirtualStor
e\Windows\System32\license.rtf WriteFile SUCCESS Offset: 0, Length: 538

C:\Windows\System32\license.rtf ReadFile
END OF
FILE Offset: 538, Length: 16,384

C:\Users\admin\AppData\Local\VirtualStor
e\Windows\System32\license.rtf CloseFile SUCCESS

C:\Windows\System32\license.rtf CloseFile SUCCESS

C:\Users\admin\AppData\Local\VirtualStor
e\Windows\System32\license.rtf CreateFile SUCCESS

Desired Access: Read Data,
Write Data

C:\Users\admin\AppData\Local\VirtualStor
e\Windows\System32\license.rtf SetEndOfFile SUCCESS EndOfFile: 0

2
C:\Users\admin\AppData\Local\VirtualStor
e\Windows\System32\license.rtf WriteFile SUCCESS

Offset: 0, Length: 68, Priority:
Normal

3 C:\Windows\System32\license.rtf CloseFile SUCCESS

C:\Users\admin\AppData\Local\VirtualStor
e\Windows\System32\license.rtf CloseFile SUCCESS

You can see that the list of events is much longer in the second case (I’ve even removed some for brevity).
For event 0 it’s no longer a single create IO request for the license.rtf file. As the user doesn’t have write
access when the create call is made to the file system it results in an ACCESS DENIED error. The LUAFV
driver sees the error in its post-create callback and as virtualization is enabled it makes a second create for
only read access. This second create succeeds. Due to the altitude of LUAFV this process is normally
hidden from the Process Monitor.

In the first table event ID 2 we saw the caller setting the file length to 0. However in the second table we now
see that the virtual file needs to be created and the contents of the original file are copied into the new virtual
file. Only after that operation has been completed will the length of the file be set to 0. The last 2 events are
more or less the same.

I hope this is a clear demonstration both of how the altitude directly affects the operation of mini-filter drivers
as well as how much file information you might be missing in Process Monitor without realizing it.

The IO manager is designed to operate asynchronously. It’s possible that multiple threads could be calling
into the same IO driver at the same time and the filter manager is no different. There’s no explicit locking in
the filter manager which would prevent multiple IO requests being dispatched at the same time to the same
file object. This can lead to concurrency and reentrancy issues.

The filter driver can assign shared state based on the file stream or file object. This can be extracted in the
filter when operating on the file and used to store and retrieve the current state information. If you dispatch
multiple IO requests to the same file it can result in an invalid state or memory corruption issues.

An example of this kind of issue is CVE-2019-0836 which was a race condition in the LUAFV driver related
to handling of the SECTION_OBJECT_POINTERS structure in the file object. Basically by racing a read
against a write IO request on the same file it was possible to get the wrong
SECTION_OBJECT_POINTERS structure assigned to the virtual file allowing a normal user to bypass
access checks and map a read-only file as writable.

To solve this problem the driver needs to not maintain complex state between pre and post operation
callbacks or over any calls out to any API which could be trapped by a user-mode application.

We showed earlier how to retarget an IO operation to another file object by switching the TargetFileObject
pointer. This needs to be done very carefully as when working with file object pointers directly almost any
operation can be performed on them. For example, if a file is opened read-only a write operation can still be
dispatched to the file object itself and it’ll succeed.

The only thing which prevents a user-mode application from doing this is the kernel checks that the handle
passed by the application to the NtWriteFile system call has the FILE_WRITE_DATA access right set. If not
the system call can return STATUS_ACCESS_DENIED. However, if the handle has write access to a file
object, but the filter driver redirects that operation to a read-only file then the check is bypassed and the user
can write to a file they don’t necessarily control.

Concurrency and Reentrancy

Incorrect Forwarding of IO Operations

https://bugs.chromium.org/p/project-zero/issues/detail?id=1774
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_section_object_pointers

4/12/2021 Project Zero: Hunting for Bugs in Windows Mini-Filter Drivers

https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html 16/16

Newer Post Older PostHome

Subscribe to: Post Comments (Atom)

Posted by Ryan at 9:04 AM

Another place this can happen is the dispatch of IO control codes. Each control code has a flag which
indicates if the file handle requires read and/or write access to be dispatched. This check is performed in the
IO manager before the request ever makes it to the file system. If the filter drivers blindly forward IO control
codes to a separate file it could send a code which normally requires write access on the handle bypassing
security checks.

The LUAFV driver is a good example of a mini-filter driver where this forwarding takes place. The previously
mentioned issue, CVE-2019-0836 while it’s a concurrency issue also relies on the fact that the file object can
be written to even though it was opened read-only.

In summary I think that mini-filter drivers are an under-appreciated source of privilege escalation bugs on
Windows. In part that’s because they’re not easy to understand. They have complex interactions with the
rest of the IO system which makes understanding difficult but can introduce really subtle and interesting
issues. I hope I’ve given you enough information to better understand how mini-filter drivers function, how
you communicate with them and what sorts of unique bug classes you might discover.

If you want some more information a good blog on the inner workings of filters drivers is Of Filesystems and
Other Demons. It’s not been updated in a long while but it still contains some valuable information. You can
also refer to MSDN which has a fairly comprehensive section on mini-filters as well as the Windows Driver
Kit sample code. Finally as a reminder I’ve uploaded a filter manager header file for use in reverse
engineering tools such as IDA Pro.

Summary

Comment as: Google Accoun

PublishPublish PreviewPreview

Enter your comment...

No comments:

Post a Comment

Simple theme. Powered by Blogger.

https://googleprojectzero.blogspot.com/2021/01/the-state-of-state-machines.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/feeds/7224812645464338214/comments/default
https://www.blogger.com/profile/17011901605865574886
https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html
http://fsfilters.blogspot.com/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://github.com/microsoft/Windows-driver-samples/tree/master/filesys/miniFilter
https://gist.github.com/tyranid/49d8a1b9e53bba4eac40df32e15d4a98
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7224812645464338214&target=email
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7224812645464338214&target=blog
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7224812645464338214&target=twitter
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7224812645464338214&target=facebook
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7224812645464338214&target=pinterest
https://www.blogger.com/

