
News and updates from the Project Zero team at Google

Project ZeroProject Zero

T u e s d a y , J u n e 2 9 , 2 0 2 1

An EPYC escape: Case-study of a KVM breakout

Posted by Felix Wilhelm, Project Zero

KVM (for Kernel-based Virtual Machine) is the de-facto standard hypervisor for Linux-based cloud
environments. Outside of Azure, almost all large-scale cloud and hosting providers are running on top of
KVM, turning it into one of the fundamental security boundaries in the cloud.

In this blog post I describe a vulnerability in KVM’s AMD-specific code and discuss how this bug can be
turned into a full virtual machine escape. To the best of my knowledge, this is the first public writeup of
a KVM guest-to-host breakout that does not rely on bugs in user space components such as QEMU.
The discussed bug was assigned CVE-2021-29657, affects kernel versions v5.10-rc1 to v5.12-rc6 and
was patched at the end of March 2021. As the bug only became exploitable in v5.10 and was discovered
roughly 5 months later, most real world deployments of KVM should not be affected. I still think the issue is
an interesting case study in the work required to build a stable guest-to-host escape against KVM and hope
that this writeup can strengthen the case that hypervisor compromises are not only theoretical issues.

I start with a short overview of KVM’s architecture, before diving into the bug and its exploitation.

KVM is a Linux based open source hypervisor supporting hardware accelerated virtualization on x86, ARM,
PowerPC and S/390. In contrast to the other big open source hypervisor Xen, KVM is deeply integrated with
the Linux Kernel and builds on its scheduling, memory management and hardware integrations to provide
efficient virtualization.

KVM is implemented as one or more kernel modules (kvm.ko plus kvm-intel.ko or kvm-amd.ko on x86) that
expose a low-level IOCTL-based API to user space processes over the /dev/kvm device. Using this API, a
user space process (often called VMM for Virtual Machine Manager) can create new VMs, assign vCPUs
and memory, and intercept memory or IO accesses to provide access to emulated or virtualization-aware
hardware devices. QEMU has been the standard user space choice for KVM-based virtualization for a long
time, but in the last few years alternatives like LKVM, crosvm or Firecracker have started to become popular.

While KVM’s reliance on a separate user space component might seem complicated at first, it has a very
nice benefit: Each VM running on a KVM host has a 1:1 mapping to a Linux process, making it managable
using standard Linux tools.

This means for example, that a guest's memory can be inspected by dumping the allocated memory of its
user space process or that resource limits for CPU time and memory can be applied easily. Additionally,
KVM can offload most work related to device emulation to the userspace component. Outside of a couple of
performance-sensitive devices related to interrupt handling, all of the complex low-level code for providing
virtual disk, network or GPU access can be implemented in userspace.

When looking at public writeups of KVM-related vulnerabilities and exploits it becomes clear that this design
was a wise decision. The large majority of disclosed vulnerabilities and all publicly available exploits affect
QEMU and its support for emulated/paravirtualized devices.

Even though KVM’s kernel attack surface is significantly smaller than the one exposed by a default QEMU
configuration or similar user space VMMs, a KVM vulnerability has advantages that make it very valuable for
an attacker:

- Whereas user space VMMs can be sandboxed to reduce the impact of a VM breakout, no such
option is available for KVM itself. Once an attacker is able to achieve code execution (or similarly
powerful primitives like write access to page tables) in the context of the host kernel, the system is
fully compromised.

- Due to the somewhat poor security history of QEMU, new user space VMMs like crosvm or
Firecracker are written in Rust, a memory safe language. Of course, there can still be non-memory
safety vulnerabilities or problems due to incorrect or buggy usage of the KVM APIs, but using Rust

Introduction

KVM

Search

Search This Blog

About Project Zero
Working at Project Zero
0day "In the Wild"
0day Exploit Root Cause Analyses
Vulnerability Disclosure FAQ

Pages

2021
An EPYC escape: Case-study of a

KVM breakout (Jun)

Fuzzing iOS code on macOS at
native speed (May)

Designing sockfuzzer, a network
syscall fuzzer for... (Apr)

Policy and Disclosure: 2021 Edition
(Apr)

Who Contains the Containers?
(Apr)

In-the-Wild Series: October 2020
0-day discovery (Mar)

Déjà vu-lnerability (Feb)

A Look at iMessage in iOS 14
(Jan)

Windows Exploitation Tricks:
Trapping Virtual Memo... (Jan)

The State of State Machines (Jan)

Hunting for Bugs in Windows Mini-
Filter Drivers (Jan)

In-the-Wild Series: Android Post-
Exploitation (Jan)

In-the-Wild Series: Windows
Exploits (Jan)

In-the-Wild Series: Android
Exploits (Jan)

In-the-Wild Series: Chrome Infinity
Bug (Jan)

In-the-Wild Series: Chrome
Exploits (Jan)

Introducing the In-the-Wild Series
(Jan)

2020
An iOS hacker tries Android (Dec)

An iOS zero-click radio proximity
exploit odyssey (Dec)

Oops, I missed it again! (Nov)

Enter the Vault: Authentication
Issues in HashiCor... (Oct)

Archives

More Create Blog S

https://googleprojectzero.blogspot.com/
https://bugs.chromium.org/p/project-zero/issues/detail?id=2177&q=owner%3Afwilhelm%40google.com&can=1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a58d9166a756a0f4a6618e4f593232593d6df134
https://www.kernel.org/doc/html/latest/virt/kvm/api.html
https://www.qemu.org/
https://github.com/lkvm/lkvm
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://github.com/firecracker-microvm/firecracker
https://googleprojectzero.blogspot.com/p/about-project-zero.html
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.github.io/0days-in-the-wild/rca.html
https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-faq.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://googleprojectzero.blogspot.com/2021/05/fuzzing-ios-code-on-macos-at-native.html
https://googleprojectzero.blogspot.com/2021/04/designing-sockfuzzer-network-syscall.html
https://googleprojectzero.blogspot.com/2021/04/policy-and-disclosure-2021-edition.html
https://googleprojectzero.blogspot.com/2021/04/who-contains-containers.html
https://googleprojectzero.blogspot.com/2021/03/in-wild-series-october-2020-0-day.html
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/the-state-of-state-machines.html
https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-exploits.html
https://googleprojectzero.blogspot.com/2021/01/introducing-in-wild-series.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/11/oops-i-missed-it-again.html
https://googleprojectzero.blogspot.com/2020/10/enter-the-vault-auth-issues-hashicorp-vault.html
https://www.blogger.com/
https://www.blogger.com/home#create
https://www.blogger.com/

effectively prevents the large majority of bugs that were discovered in C-based user space VMMs
in the past.

- Finally, a pure KVM exploit can work against targets that use proprietary or heavily modified user
space VMMs. While the big cloud providers do not go into much detail about their virtualization
stacks publicly, it is safe to assume that they do not depend on an unmodified QEMU version for
their production workloads. In contrast, KVM’s smaller code base makes heavy modifications
unlikely (and KVM’s contributor list points at a strong tendency to upstream such modifications
when they exist).

With these advantages in mind, I decided to spend some time hunting for a KVM vulnerability that could be
turned into a guest-to-host escape. In the past, I had some success with finding vulnerabilities in KVM’s
support for nested virtualization on Intel CPUs so reviewing the same functionality for AMD seemed like a
good starting point. This is even more true, because the recent increase of AMD’s market share in the server
segment means that KVM’s AMD implementation is suddenly becoming a more interesting target than it was
in the last years.

Nested virtualization, the ability for a VM (called L1) to spawn nested guests (L2), was also a niche feature
for a long time. However, due to hardware improvements that reduce its overhead and increasing customer
demand it’s becoming more widely available. For example, Microsoft is heavily pushing for Virtualization-
based Security as part of newer Windows versions, requiring nested virtualization to support cloud-hosted
Windows installations. KVM enables support for nested virtualization on both AMD and Intel by default, so if
an administrator or the user space VMM does not explicitly disable it, it’s part of the attack surface for a
malicious or compromised VM.

AMD’s virtualization extension is called SVM (for Secure Virtual Machine) and in order to support nested
virtualization, the host hypervisor needs to intercept all SVM instructions that are executed by its guests,
emulate their behavior and keep its state in sync with the underlying hardware. As you might imagine,
implementing this correctly is quite difficult with a large potential for complex logic flaws, making it a perfect
target for manual code review.

Before diving into the KVM codebase and the bug I discovered, I want to quickly introduce how AMD SVM
works to make the rest of the post easier to understand. (For a thorough documentation see AMD64
Architecture Programmer’s Manual, Volume 2: System Programming Chapter 15.) SVM adds support for 6
new instructions to x86-64 if SVM support is enabled by setting the SVME bit in the EFER MSR. The most
interesting of these instructions is VMRUN, which (as its name suggests) is responsible for running a guest
VM. VMRUN takes an implicit parameter via the RAX register pointing to the page-aligned physical address
of a data structure called “virtual machine control block” (VMCB), which describes the state and configuration
of the VM.

The VMCB is split into two parts: First, the State Save area, which stores the values of all guest registers,
including segment and control registers. Second, the Control area which describes the configuration of the
VM. The Control area describes the virtualization features enabled for a VM, sets which VM actions are
intercepted to trigger a VM exit and stores some fundamental configuration values such as the page table
address used for nested paging.

If the VMCB is correctly prepared (and we are not already running in a VM), VMRUN will first save the host
state in a memory region called the host save area, whose address is configured by writing a physical
address to the VM_HSAVE_PA MSR. Once the host state is saved, the CPU switches to the VM context and
VMRUN only returns once a VM exit is triggered for one reason or another.

An interesting aspect of SVM is that a lot of the state recovery after a VM exit has to be done by the
hypervisor. Once a VM exit occurs, only RIP, RSP and RAX are restored to the previous host values and all
other general purpose registers still contain the guest values. In addition, a full context switch requires
manual execution of the VMSAVE/VMLOAD instructions which save/load additional system registers (FS,
SS, LDTR, STAR, LSTAR …) from memory.

For nested virtualization to work, KVM intercepts execution of the VMRUN instruction and creates its own
VMCB based on the VMCB the L1 guest prepared (called vmcb12 in KVM terminology). Of course, KVM
can’t trust the guest provided vmcb12 and needs to carefully validate all fields that end up in the real VMCB
that gets passed to the hardware (known as vmcb02).

Most of the KVM’s code for nested virtualization on AMD is implemented in arch/x86/kvm/svm/nested.c and
the code that intercepts VMRUN instructions of nested guests is implemented in nested_svm_vmrun:

int nested_svm_vmrun(struct vcpu_svm *svm)

{

 int ret;

 struct vmcb *vmcb12;

 struct vmcb *hsave = svm->nested.hsave;

 struct vmcb *vmcb = svm->vmcb;

 struct kvm_host_map map;

The Bug

Announcing the Fuzzilli Research
Grant Program (Oct)

Attacking the Qualcomm Adreno
GPU (Sep)

JITSploitation I: A JIT Bug (Sep)

JITSploitation II: Getting
Read/Write (Sep)

JITSploitation III: Subverting
Control Flow (Sep)

MMS Exploit Part 5: Defeating
Android ASLR, Gettin... (Aug)

Exploiting Android Messengers
with WebRTC: Part 3 (Aug)

Exploiting Android Messengers
with WebRTC: Part 2 (Aug)

MMS Exploit Part 4: MMS Primer,
Completing the ASL... (Aug)

Exploiting Android Messengers
with WebRTC: Part 1 (Aug)

The core of Apple is PPL: Breaking
the XNU kernel'... (Jul)

One Byte to rule them all (Jul)

Root Cause Analyses for 0-day In-
the-Wild Exploits (Jul)

Detection Deficit: A Year in Review
of 0-days Used... (Jul)

MMS Exploit Part 3: Constructing
the Memory Corrup... (Jul)

MMS Exploit Part 2: Effective
Fuzzing of the Qmage... (Jul)

MMS Exploit Part 1: Introduction to
the Samsung Qm... (Jul)

How to unc0ver a 0-day in 4 hours
or less (Jul)

FF Sandbox Escape (CVE-2020-
12388) (Jun)

A survey of recent iOS kernel
exploits (Jun)

Fuzzing ImageIO (Apr)

You Won't Believe what this
One Line Change Did to... (Apr)

TFW you-get-really-excited-you-
patch-diffed-a-0day... (Apr)

Escaping the Chrome Sandbox
with RIDL (Feb)

Mitigations are attack surface, too
(Feb)

A day^W^W Several months in the
life of Project Ze... (Feb)

A day^W^W Several months in the
life of Project Ze... (Feb)

Part II: Returning to Adobe Reader
symbols on macOS (Jan)

Remote iPhone Exploitation Part 3:
From Memory Cor... (Jan)

Remote iPhone Exploitation Part 2:
Bringing Light ... (Jan)

Remote iPhone Exploitation Part 1:
Poking Memory v... (Jan)

Policy and Disclosure: 2020 Edition
(Jan)

2019
Calling Local Windows RPC

Servers from .NET (Dec)

SockPuppet: A Walkthrough of a
Kernel Exploit for ... (Dec)

Bad Binder: Android In-The-Wild
Exploit (Nov)

https://bugs.chromium.org/p/project-zero/issues/list?q=vmx%20owner%3Afwilhelm&can=1
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://www.amd.com/system/files/TechDocs/24593.pdf
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/kvm/svm/nested.c?h=v5.11
https://googleprojectzero.blogspot.com/2020/10/announcing-fuzzilli-research-grant.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://googleprojectzero.blogspot.com/2020/08/mms-exploit-part-5-defeating-aslr-getting-rce.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-3.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-2.html
https://googleprojectzero.blogspot.com/2020/08/mms-exploit-part-4-completing-aslr-oracle.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-1.html
https://googleprojectzero.blogspot.com/2020/07/the-core-of-apple-is-ppl-breaking-xnu.html
https://googleprojectzero.blogspot.com/2020/07/one-byte-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2020/07/root-cause-analyses-for-0-day-in-wild.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-3-constructing-primitives.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/how-to-unc0ver-0-day-in-4-hours-or-less.html
https://googleprojectzero.blogspot.com/2020/06/ff-sandbox-escape-cve-2020-12388.html
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
https://googleprojectzero.blogspot.com/2020/04/you-wont-believe-what-this-one-line.html
https://googleprojectzero.blogspot.com/2020/04/tfw-you-get-really-excited-you-patch.html
https://googleprojectzero.blogspot.com/2020/02/escaping-chrome-sandbox-with-ridl.html
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part2.html
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part1.html
https://googleprojectzero.blogspot.com/2020/01/part-ii-returning-to-adobe-reader.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/policy-and-disclosure-2020-edition.html
https://googleprojectzero.blogspot.com/2019/12/calling-local-windows-rpc-servers-from.html
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html

 u64 vmcb12_gpa;

 vmcb12_gpa = svm->vmcb->save.rax; ** 1 **

 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb12_gpa), &map); ** 2 **

 …
 ret = kvm_skip_emulated_instruction(&svm->vcpu);

 vmcb12 = map.hva;

 if (!nested_vmcb_checks(svm, vmcb12)) { ** 3 **

 vmcb12->control.exit_code = SVM_EXIT_ERR;

 vmcb12->control.exit_code_hi = 0;

 vmcb12->control.exit_info_1 = 0;

 vmcb12->control.exit_info_2 = 0;

 goto out;

 }

 ...

 /*

 * Save the old vmcb, so we don't need to pick what we save, but can

 * restore everything when a VMEXIT occurs

 */

 hsave->save.es = vmcb->save.es;

 hsave->save.cs = vmcb->save.cs;

 hsave->save.ss = vmcb->save.ss;

 hsave->save.ds = vmcb->save.ds;

 hsave->save.gdtr = vmcb->save.gdtr;

 hsave->save.idtr = vmcb->save.idtr;

 hsave->save.efer = svm->vcpu.arch.efer;

 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);

 hsave->save.cr4 = svm->vcpu.arch.cr4;

 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);

 hsave->save.rip = kvm_rip_read(&svm->vcpu);

 hsave->save.rsp = vmcb->save.rsp;

 hsave->save.rax = vmcb->save.rax;

 if (npt_enabled)

 hsave->save.cr3 = vmcb->save.cr3;

 else

 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);

 copy_vmcb_control_area(&hsave->control, &vmcb->control);

 svm->nested.nested_run_pending = 1;

 if (enter_svm_guest_mode(svm, vmcb12_gpa, vmcb12)) ** 4 **

 goto out_exit_err;

 if (nested_svm_vmrun_msrpm(svm))

 goto out;

out_exit_err:

 svm->nested.nested_run_pending = 0;

 svm->vmcb->control.exit_code = SVM_EXIT_ERR;

 svm->vmcb->control.exit_code_hi = 0;

 svm->vmcb->control.exit_info_1 = 0;

 svm->vmcb->control.exit_info_2 = 0;

 nested_svm_vmexit(svm);

out:

 kvm_vcpu_unmap(&svm->vcpu, &map, true);

 return ret;

}

The function first fetches the value of RAX out of the currently active vmcb (svm->vcmb) in 1 (numbers are
marked in the code samples). For guests using nested paging (which is the only relevant configuration
nowadays) RAX contains a guest physical address (GPA), which needs to be translated into a host physical
address (HPA) first. kvm_vcpu_map (2) takes care of this translation and maps the underlying page to a host
virtual address (HVA) that can be directly accessed by KVM.

Once the VMCB is mapped, nested_vmcb_checks is called for some basic validation in 3. Afterwards, the
L1 guest context which is stored in svm->vmcb is copied into the host save area svm->nested.hsave before

KTRW: The journey to build a
debuggable iPhone (Oct)

The story of Adobe Reader
symbols (Oct)

Windows Exploitation Tricks:
 Spoofing Name... (Sep)

A very deep dive into iOS Exploit
chains found in ... (Aug)

In-the-wild iOS Exploit Chain 1
(Aug)

In-the-wild iOS Exploit Chain 2
(Aug)

In-the-wild iOS Exploit Chain 3
(Aug)

In-the-wild iOS Exploit Chain 4
(Aug)

In-the-wild iOS Exploit Chain 5
(Aug)

Implant Teardown (Aug)

JSC Exploits (Aug)

The Many Possibilities of CVE-
2019-8646 (Aug)

Down the Rabbit-Hole... (Aug)

The Fully Remote Attack Surface
of the iPhone (Aug)

Trashing the Flow of Data (May)

Windows Exploitation Tricks:
Abusing the User-Mode... (Apr)

Virtually Unlimited Memory:
Escaping the Chrome Sa... (Apr)

Splitting atoms in XNU (Apr)

Windows Kernel Logic Bug Class:
Access Mode Mismat... (Mar)

Android Messaging: A Few Bugs
Short of a Chain (Mar)

The Curious Case of Convexity
Confusion (Feb)

Examining Pointer Authentication
on the iPhone XS (Feb)

voucher_swap: Exploiting MIG
reference counting in... (Jan)

Taking a page from the
kernel's book: A TLB issue ...
(Jan)

2018
On VBScript (Dec)

Searching statically-linked
vulnerable library fun... (Dec)

Adventures in Video Conferencing
Part 5: Where Do ... (Dec)

Adventures in Video Conferencing
Part 4: What Didn... (Dec)

Adventures in Video Conferencing
Part 3: The Even ... (Dec)

Adventures in Video Conferencing
Part 2: Fun with ... (Dec)

Adventures in Video Conferencing
Part 1: The Wild ... (Dec)

Injecting Code into Windows
Protected Processes us... (Nov)

Heap Feng Shader: Exploiting
SwiftShader in Chrome (Oct)

Deja-XNU (Oct)

Injecting Code into Windows
Protected Processes us... (Oct)

365 Days Later: Finding and
Exploiting Safari Bugs... (Oct)

https://googleprojectzero.blogspot.com/2019/10/ktrw-journey-to-build-debuggable-iphone.html
https://googleprojectzero.blogspot.com/2019/10/the-story-of-adobe-reader-symbols.html
https://googleprojectzero.blogspot.com/2019/09/windows-exploitation-tricks-spoofing.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-2.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-3.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-5.html
https://googleprojectzero.blogspot.com/2019/08/implant-teardown.html
https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2019/08/down-rabbit-hole.html
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/05/trashing-flow-of-data.html
https://googleprojectzero.blogspot.com/2019/04/windows-exploitation-tricks-abusing.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html
https://googleprojectzero.blogspot.com/2019/03/windows-kernel-logic-bug-class-access.html
https://googleprojectzero.blogspot.com/2019/03/android-messaging-few-bugs-short-of.html
https://googleprojectzero.blogspot.com/2019/02/the-curious-case-of-convexity-confusion.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/01/voucherswap-exploiting-mig-reference.html
https://googleprojectzero.blogspot.com/2019/01/taking-page-from-kernels-book-tlb-issue.html
https://googleprojectzero.blogspot.com/2018/12/on-vbscript.html
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-5.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-4.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-2.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/10/heap-feng-shader-exploiting-swiftshader.html
https://googleprojectzero.blogspot.com/2018/10/deja-xnu.html
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/10/365-days-later-finding-and-exploiting.html

KVM enters the nested guest context by calling enter_svm_guest_mode (4).

int enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb12_gpa,

 struct vmcb *vmcb12)

{

 int ret;

 svm->nested.vmcb12_gpa = vmcb12_gpa;

 load_nested_vmcb_control(svm, &vmcb12->control);

 nested_prepare_vmcb_save(svm, vmcb12);

 nested_prepare_vmcb_control(svm);

 ret = nested_svm_load_cr3(&svm->vcpu, vmcb12->save.cr3,

 nested_npt_enabled(svm));

 if (ret)

 return ret;

 svm_set_gif(svm, true);

 return 0;

}

static void load_nested_vmcb_control(struct vcpu_svm *svm,

 struct vmcb_control_area *control)

{

 copy_vmcb_control_area(&svm->nested.ctl, control);

 ...

}

Looking at enter_svm_guest_mode we can see that KVM copies the vmcb12 control area directly into svm-
>nested.ctl and does not perform any further checks on the copied value.
Readers familiar with double fetch or Time-of-Check-to-Time-of-Use vulnerabilities might already see a
potential issue here: The call to nested_vmcb_checks at the beginning of nested_svm_vmrun performs all
of its checks on a copy of the VMCB that is stored in guest memory. This means that a guest with multiple
CPU cores can modify fields in the VMCB after they are verified in nested_vmcb_checks, but before they
are copied to svm->nested.ctl in load_nested_vmcb_control.

Let’s look at nested_vmcb_checks to see what kind of checks we can bypass with this approach:

static bool nested_vmcb_check_controls(struct vmcb_control_area *control)

{

 if ((vmcb_is_intercept(control, INTERCEPT_VMRUN)) == 0)

 return false;

 if (control->asid == 0)

 return false;

 if ((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&

 !npt_enabled)

 return false;

 return true;

}

At first glance this looks pretty harmless. control->asid isn’t used anywhere and the last check is only
relevant for systems where nested paging isn’t supported. However, the first check turns out to be very
interesting.

For reasons unknown to me, SVM VMCBs contain a bit that enables or disables interception of the VMRUN
instruction when executed inside a guest. Clearing this bit isn’t actually supported by hardware and results in
an immediate VMEXIT, so the check in nested_vmcb_check_controls simply replicates this behavior.
 When we race and bypass the check by repeatedly flipping the value of the INTERCEPT_VMRUN bit, we
can end up in a situation where svm->nested.ctl contains a 0 in place of the INTERCEPT_VMRUN bit. To
understand the impact we first need to see how nested vmexit’s are handled in KVM:

The main SVM exit handler is the function handle_exit in arch/x86/kvm/svm.c, which is called whenever a
VMexit occurs. When KVM is running a nested guest, it first has to check if the exit should be handled by
itself or the L1 hypervisor. To do this it calls the function nested_svm_exit_handled (5) which will return
NESTED_EXIT_DONE if the vmexit will be handled by the L1 hypervisor and no further processing by the L0
hypervisor is needed:

 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)

{

 struct vcpu_svm *svm = to_svm(vcpu);

 struct kvm_run *kvm_run = vcpu->run;

A cache invalidation bug in Linux
memory management (Sep)

OATmeal on the Universal Cereal
Bus: Exploiting An... (Sep)

The Problems and Promise of
WebAssembly (Aug)

Windows Exploitation Tricks:
Exploiting Arbitrary ... (Aug)

Adventures in vulnerability
reporting (Aug)

Drawing Outside the Box:
Precision Issues in Graph... (Jul)

Detecting Kernel Memory
Disclosure – Whitepaper (Jun)

Bypassing Mitigations by Attacking
JIT Server in M... (May)

Windows Exploitation Tricks:
Exploiting Arbitrary ... (Apr)

Reading privileged memory with a
side-channel (Jan)

2017
aPAColypse now: Exploiting

Windows 10 in a Local N... (Dec)

Over The Air - Vol. 2, Pt. 3:
Exploiting The Wi-Fi... (Oct)

Using Binary Diffing to Discover
Windows Kernel Me... (Oct)

Over The Air - Vol. 2, Pt. 2:
Exploiting The Wi-Fi... (Oct)

Over The Air - Vol. 2, Pt. 1:
Exploiting The Wi-Fi... (Sep)

The Great DOM Fuzz-off of 2017
(Sep)

Bypassing VirtualBox Process
Hardening on Windows (Aug)

Windows Exploitation Tricks:
Arbitrary Directory C... (Aug)

Trust Issues: Exploiting TrustZone
TEEs (Jul)

Exploiting the Linux kernel via
packet sockets (May)

Exploiting .NET Managed DCOM
(Apr)

Exception-oriented exploitation on
iOS (Apr)

Over The Air: Exploiting
Broadcom’s Wi-Fi Stack (P... (Apr)

Notes on Windows Uniscribe
Fuzzing (Apr)

Pandavirtualization: Exploiting the
Xen hypervisor (Apr)

Over The Air: Exploiting
Broadcom’s Wi-Fi Stack (P... (Apr)

Project Zero Prize Conclusion
(Mar)

Attacking the Windows NVIDIA
Driver (Feb)

Lifting the (Hyper) Visor: Bypassing
Samsung’s Rea... (Feb)

2016
Chrome OS exploit: one byte

overflow and symlinks (Dec)

BitUnmap: Attacking Android
Ashmem (Dec)

Breaking the Chain (Nov)

task_t considered harmful (Oct)

Announcing the Project Zero Prize
(Sep)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/kvm/svm/svm.c?h=v5.11
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://googleprojectzero.blogspot.com/2018/09/oatmeal-on-universal-cereal-bus.html
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html
https://googleprojectzero.blogspot.com/2018/08/adventures-in-vulnerability-reporting.html
https://googleprojectzero.blogspot.com/2018/07/drawing-outside-box-precision-issues-in.html
https://googleprojectzero.blogspot.com/2018/06/detecting-kernel-memory-disclosure.html
https://googleprojectzero.blogspot.com/2018/05/bypassing-mitigations-by-attacking-jit.html
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-10-in_18.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/using-binary-diffing-to-discover.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html
https://googleprojectzero.blogspot.com/2017/08/windows-exploitation-tricks-arbitrary.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/04/exploiting-net-managed-dcom.html
https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/notes-on-windows-uniscribe-fuzzing.html
https://googleprojectzero.blogspot.com/2017/04/pandavirtualization-exploiting-xen.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/03/project-zero-prize-conclusion.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/bitunmap-attacking-android-ashmem.html
https://googleprojectzero.blogspot.com/2016/11/breaking-chain.html
https://googleprojectzero.blogspot.com/2016/10/taskt-considered-harmful.html
https://googleprojectzero.blogspot.com/2016/09/announcing-project-zero-prize.html

 u32 exit_code = svm->vmcb->control.exit_code;

 …

 if (is_guest_mode(vcpu)) {

 int vmexit;

 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);

 vmexit = nested_svm_exit_special(svm);

 if (vmexit == NESTED_EXIT_CONTINUE)

 vmexit = nested_svm_exit_handled(svm); ** 5 **

 if (vmexit == NESTED_EXIT_DONE)

 return 1;

 }

}

static int nested_svm_intercept(struct vcpu_svm *svm)

{

 // exit_code==INTERCEPT_VMRUN when the L2 guest executes vmrun

 u32 exit_code = svm->vmcb->control.exit_code;

 int vmexit = NESTED_EXIT_HOST;

 switch (exit_code) {

 case SVM_EXIT_MSR:

 vmexit = nested_svm_exit_handled_msr(svm);

 break;

 case SVM_EXIT_IOIO:

 vmexit = nested_svm_intercept_ioio(svm);

 break;

 …
 default: {

 if (vmcb_is_intercept(&svm->nested.ctl, exit_code)) ** 7 **

 vmexit = NESTED_EXIT_DONE;

 }

 }

 return vmexit;

}

int nested_svm_exit_handled(struct vcpu_svm *svm)

{

 int vmexit;

 vmexit = nested_svm_intercept(svm); ** 6 **

 if (vmexit == NESTED_EXIT_DONE)

 nested_svm_vmexit(svm); ** 8 **

 return vmexit;

}

nested_svm_exit_handled first calls nested_svm_intercept (6) to see if the exit should be handled.
When we trigger an exit by executing VMRUN in a L2 guest, the default case is executed (7) to see if the
INTERCEPT_VMRUN bit in svm->nested.ctl is set. Normally, this should always be the case and the function
returns NESTED_EXIT_DONE to trigger a nested VM exit from L2 to L1 and to let the L1 hypervisor handle
the exit (8). (This way KVM supports infinite nesting of hypervisors).

However, if the L1 guest exploited the race condition described above svm->nested.ctl won’t have the
INTERCEPT_VMRUN bit set and the VM exit will be handled by KVM itself. This results in a second call to
nested_svm_vmrun while still running inside the L2 guest context. nested_svm_vmrun isn’t written to handle
this situation and will blindly overwrite the L1 context stored in svm->nested.hsave with data from the
currently active svm->vmcb which contains data for the L2 guest:

 /*

 * Save the old vmcb, so we don't need to pick what we save, but can

 * restore everything when a VMEXIT occurs

 */

 hsave->save.es = vmcb->save.es;

 hsave->save.cs = vmcb->save.cs;

 hsave->save.ss = vmcb->save.ss;

 hsave->save.ds = vmcb->save.ds;

 hsave->save.gdtr = vmcb->save.gdtr;

 hsave->save.idtr = vmcb->save.idtr;

 hsave->save.efer = svm->vcpu.arch.efer;

Return to libstagefright: exploiting
libutils on A... (Sep)

A Shadow of our Former Self (Aug)

A year of Windows kernel font
fuzzing #2: the tech... (Jul)

How to Compromise the Enterprise
Endpoint (Jun)

A year of Windows kernel font
fuzzing #1: the results (Jun)

Exploiting Recursion in the Linux
Kernel (Jun)

Life After the Isolated Heap (Mar)

Race you to the kernel! (Mar)

Exploiting a Leaked Thread Handle
(Mar)

The Definitive Guide on Win32 to
NT Path Conversion (Feb)

Racing MIDI messages in Chrome
(Feb)

Raising the Dead (Jan)

2015
FireEye Exploitation: Project Zero’s

Vulnerability... (Dec)

Between a Rock and a Hard Link
(Dec)

Windows Sandbox Attack Surface
Analysis (Nov)

Hack The Galaxy: Hunting Bugs in
the Samsung Galax... (Nov)

Windows Drivers are True’ly Tricky
(Oct)

Revisiting Apple IPC: (1)
Distributed Objects (Sep)

Kaspersky: Mo Unpackers, Mo
Problems. (Sep)

Stagefrightened? (Sep)

Enabling QR codes in Internet
Explorer, or a story... (Sep)

Windows 10^H^H Symbolic Link
Mitigations (Aug)

One font vulnerability to rule them
all #4: Window... (Aug)

Three bypasses and a fix for one of
Flash's Vector... (Aug)

Attacking ECMAScript Engines
with Redefinition (Aug)

One font vulnerability to rule them
all #3: Window... (Aug)

One font vulnerability to rule them
all #2: Adobe ... (Aug)

One font vulnerability to rule them
all #1: Introd... (Jul)

One Perfect Bug: Exploiting Type
Confusion in Flash (Jul)

Significant Flash exploit mitigations
are live in ... (Jul)

From inter to intra: gaining
reliability (Jul)

When ‘int’ is the new ‘short’ (Jul)

What is a "good"
memory corruption vulnerability?
(Jun)

Analysis and Exploitation of an
ESET Vulnerability (Jun)

Owning Internet Printing - A Case
Study in Modern ... (Jun)

Dude, where’s my heap? (Jun)

https://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html
https://googleprojectzero.blogspot.com/2016/08/a-shadow-of-our-former-self.html
https://googleprojectzero.blogspot.com/2016/07/a-year-of-windows-kernel-font-fuzzing-2.html
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://googleprojectzero.blogspot.com/2016/06/a-year-of-windows-kernel-font-fuzzing-1_27.html
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://googleprojectzero.blogspot.com/2016/03/life-after-isolated-heap.html
https://googleprojectzero.blogspot.com/2016/03/race-you-to-kernel.html
https://googleprojectzero.blogspot.com/2016/03/exploiting-leaked-thread-handle.html
https://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
https://googleprojectzero.blogspot.com/2016/02/racing-midi-messages-in-chrome.html
https://googleprojectzero.blogspot.com/2016/01/raising-dead.html
https://googleprojectzero.blogspot.com/2015/12/fireeye-exploitation-project-zeros.html
https://googleprojectzero.blogspot.com/2015/12/between-rock-and-hard-link.html
https://googleprojectzero.blogspot.com/2015/11/windows-sandbox-attack-surface-analysis.html
https://googleprojectzero.blogspot.com/2015/11/hack-galaxy-hunting-bugs-in-samsung.html
https://googleprojectzero.blogspot.com/2015/10/windows-drivers-are-truely-tricky.html
https://googleprojectzero.blogspot.com/2015/09/revisiting-apple-ipc-1-distributed_28.html
https://googleprojectzero.blogspot.com/2015/09/kaspersky-mo-unpackers-mo-problems.html
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://googleprojectzero.blogspot.com/2015/09/enabling-qr-codes-in-internet-explorer.html
https://googleprojectzero.blogspot.com/2015/08/windows-10hh-symbolic-link-mitigations.html
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all_21.html
https://googleprojectzero.blogspot.com/2015/08/three-bypasses-and-fix-for-one-of.html
https://googleprojectzero.blogspot.com/2015/08/attacking-ecmascript-engines-with.html
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all_13.html
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2015/07/one-font-vulnerability-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2015/07/one-perfect-bug-exploiting-type_20.html
https://googleprojectzero.blogspot.com/2015/07/significant-flash-exploit-mitigations_16.html
https://googleprojectzero.blogspot.com/2015/07/from-inter-to-intra-gaining-reliability_10.html
https://googleprojectzero.blogspot.com/2015/07/when-int-is-new-short.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-of-eset.html
https://googleprojectzero.blogspot.com/2015/06/owning-internet-printing-case-study-in.html
https://googleprojectzero.blogspot.com/2015/06/dude-wheres-my-heap.html

 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);

 hsave->save.cr4 = svm->vcpu.arch.cr4;

 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);

 hsave->save.rip = kvm_rip_read(&svm->vcpu);

 hsave->save.rsp = vmcb->save.rsp;

 hsave->save.rax = vmcb->save.rax;

 if (npt_enabled)

 hsave->save.cr3 = vmcb->save.cr3;

 else

 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);

 copy_vmcb_control_area(&hsave->control, &vmcb->control);

This becomes a security issue due to the way Model Specific Register (MSR) intercepts are handled for
nested guests:
SVM uses a permission bitmap to control which MSRs can be accessed by a VM. The bitmap is a 8KB data
structure with two bits per MSR, one of which controls read access and the other write access. A 1 bit in this
position means the access is intercepted and triggers a vm exit, a 0 bit means the VM has direct access to
the MSR. The HPA address of the bitmap is stored in the VMCB control area and for normal L1 KVM guests,
the pages are allocated and pinned into memory as soon as a vCPU is created.

For a nested guest, the MSR permission bitmap is stored in svm->nested.msrpm and its physical address is
copied into the active VMCB (in svm->vmcb->control.msrpm_base_pa) while the nested guest is running.
Using the described double invocation of nested_svm_vmrun, a malicious guest can copy this value into the
svm->nested.hsave VMCB when copy_vmcb_control_area is executed. This is interesting because the
KVM’s hsave area normally only contains data from the L1 guest context so svm-
>nested.hsave.msrpm_base_pa would normally point to the pinned vCPU-specific MSR bitmap pages.

This edge case becomes exploitable thanks to a relatively recent change in KVM:
Since commit “2fcf4876: KVM: nSVM: implement on demand allocation of the nested state” from last
October, svm->nested.msrpm is dynamically allocated and freed when a guest changes the SVME bit of the
MSR_EFER register:

int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)

{

 struct vcpu_svm *svm = to_svm(vcpu);

 u64 old_efer = vcpu->arch.efer;

 vcpu->arch.efer = efer;

 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {

 if (!(efer & EFER_SVME)) {

 svm_leave_nested(svm);

 svm_set_gif(svm, true);

 ... /*

 * Free the nested guest state, unless we are in SMM.

 * In this case we will return to the nested guest

 * as soon as we leave SMM.

 */

 if (!is_smm(&svm->vcpu))

 svm_free_nested(svm);

 } ...

}

}

For the “disable SVME” case, KVM will first call svm_leave_nested to forcibly leave potential
nested guests and then free the svm->nested data structures (including the backing pages for the MSR
permission bitmap) in svm_free_nested. As svm_leave_nested believes that svm-
>nested.hsave contains the saved context of the L1 guest, it simply copies its control area to the real
VMCB:

void svm_leave_nested(struct vcpu_svm *svm)

{

 if (is_guest_mode(&svm->vcpu)) {

 struct vmcb *hsave = svm->nested.hsave;

 struct vmcb *vmcb = svm->vmcb;

 ...

 copy_vmcb_control_area(&vmcb->control, &hsave->control);

 ...

 }

}

But as mentioned before, svm->nested.hsave->control.msrpm_base_pa can still point to
svm->nested->msrpm. Once svm_free_nested is finished and KVM passes control back to the guest, the
CPU will use the freed pages for its MSR permission checks. This gives a guest unrestricted access to host

In-Console-Able (May)

A Tale of Two Exploits (Apr)

Taming the wild copy: Parallel
Thread Corruption (Mar)

Exploiting the DRAM rowhammer
bug to gain kernel p... (Mar)

Feedback and data-driven updates
to Google’s discl... (Feb)

(^Exploiting)\s*(CVE-2015-0318)\s*
(in)\s*(Flash$) (Feb)

A Token’s Tale (Feb)

Exploiting NVMAP to escape the
Chrome sandbox - CV... (Jan)

Finding and exploiting ntpd
vulnerabilities (Jan)

2014
Internet Explorer EPM Sandbox

Escape CVE-2014-6350 (Dec)

pwn4fun Spring 2014 - Safari - Part
II (Nov)

Project Zero Patch Tuesday
roundup, November 2014 (Nov)

Did the “Man With No Name” Feel
Insecure? (Oct)

More Mac OS X and iPhone
sandbox escapes and kerne... (Oct)

Exploiting CVE-2014-0556 in Flash
(Sep)

The poisoned NUL byte, 2014
edition (Aug)

What does a pointer look like,
anyway? (Aug)

Mac OS X and iPhone sandbox
escapes (Jul)

pwn4fun Spring 2014 - Safari - Part
I (Jul)

Announcing Project Zero (Jul)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?h=v5.11&id=2fcf4876ada8a293d3b92a1033b8b990a7c613d3
https://googleprojectzero.blogspot.com/2015/05/in-console-able.html
https://googleprojectzero.blogspot.com/2015/04/a-tale-of-two-exploits.html
https://googleprojectzero.blogspot.com/2015/03/taming-wild-copy-parallel-thread.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/02/feedback-and-data-driven-updates-to.html
https://googleprojectzero.blogspot.com/2015/02/exploitingscve-2015-0318sinsflash.html
https://googleprojectzero.blogspot.com/2015/02/a-tokens-tale_9.html
https://googleprojectzero.blogspot.com/2015/01/exploiting-nvmap-to-escape-chrome.html
https://googleprojectzero.blogspot.com/2015/01/finding-and-exploiting-ntpd.html
https://googleprojectzero.blogspot.com/2014/12/internet-explorer-epm-sandbox-escape.html
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://googleprojectzero.blogspot.com/2014/11/project-zero-patch-tuesday-roundup.html
https://googleprojectzero.blogspot.com/2014/10/did-man-with-no-name-feel-insecure.html
https://googleprojectzero.blogspot.com/2014/10/more-mac-os-x-and-iphone-sandbox.html
https://googleprojectzero.blogspot.com/2014/09/exploiting-cve-2014-0556-in-flash.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/what-does-pointer-look-like-anyway.html
https://googleprojectzero.blogspot.com/2014/07/mac-os-x-and-iphone-sandbox-escapes.html
https://googleprojectzero.blogspot.com/2014/07/pwn4fun-spring-2014-safari-part-i_24.html
https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html

MSRs if the pages are reused and partially overwritten with zeros.

To summarize, a malicious guest can gain access to host MSRs using the following approach:
1. Enable the SVME bit in MSR_EFER to enable nested virtualization
2. Repeatedly try to launch a L2 guest using the VMRUN instruction while flipping the

INTERCEPT_VMRUN bit on a second CPU core.
3. If VMRUN succeeds, try to launch a “L3” guest using another invocation of VMRUN. If this fails, we

have lost the race in step 2 and must try again. If VMRUN succeeds we have successfully
overwritten svm->nested.hsave with our L2 context.

4. Clear the SVME bit in MSR_EFER while still running in the “L3” context. This frees the MSR
permission bitmap backing pages used by the L2 guest who is now executing again.

5. Wait until the KVM host reuses the backing pages. This will potentially clear all or some of the bits,
giving the guest access to host MSRs.

When I initially discovered and reported this vulnerability, I was feeling pretty confident that this type of MSR
access should be more or less equivalent to full code execution on the host. While my feeling turned out to
be correct, getting there still took me multiple weeks of exploit development. In the next section I’ll describe
the steps to turn this primitive into a guest-to-host escape.

Assuming our guest can get full unrestricted access to any MSR (which is only a question of timing thanks to
init_on_alloc=1 being the default for most modern distributions), how can we escalate this into running
arbitrary code in the context of the KVM host? To answer this question we first need to look at what kind of
MSRs are supported on a modern AMD system. Looking at the BIOS and Kernel Developer’s Guide for
recent AMD processors we can find a wide range of MSRs starting with well known and widely used ones
such as EFER (the Extended Feature Enable Register) or LSTAR (the syscall target address) to rarely used
ones like SMI_ON_IO_TRAP (can be used to generate a System Management Mode Interrupt when specific
IO port ranges are accessed).
Looking at the list, several registers like LSTAR or KERNEL_GSBASE seem like interesting targets for
redirecting the execution of the host kernel. Unrestricted access to these registers is actually enabled by
default, however they are automatically restored to a valid state by KVM after a vmexit so modifying them
does not lead to any changes in host behavior.

Still, there is one MSR that we previously mentioned and that seems to give us a straightforward way to
achieve code execution: The VM_HSAVE_PA that stores the physical address of the host save area, which
is used to restore the host context when a vmexit occurs. If we can point this MSR at a memory location
under our control we should be able to fake a malicious host context and execute our own code after a
vmexit.

While this sounds pretty straightforward in theory, implementing it still has some challenges:

● AMD is pretty clear about the fact that software should not touch the host save area in any way and
that the data stored in this area is CPU-dependent: “Processor implementations may store only part
or none of host state in the memory area pointed to by VM_HSAVE_PA MSR and may store some
or all host state in hidden on-chip memory. Different implementations may choose to save the
hidden parts of the host’s segment registers as well as the selectors. For these reasons, software
must not rely on the format or contents of the host state save area, nor attempt to change host
state by modifying the contents of the host save area.” (AMD64 Architecture Programmer’s Manual,
Volume 2: System Programming, Page 477). To strengthen the point, the format of the host save
area is undocumented.

● Debugging issues involving an invalid host state is very tedious as any issue leads to an immediate
processor shutdown. Even worse, I wasn’t sure if rewriting the VM_HSAVE_PA MSR while running
inside a VM can even work. It’s not really something that should happen during normal operation so
in the worst case scenario, overwriting the MSR would just lead to an immediate crash.

● Even if we can create a valid (but malicious) host save area in our guest, we still need some way to
identify its host physical address (HPA). Because our guest runs with nested paging enabled,
physical addresses that we can see in the guest (GPAs) are still one address translation away from
their HPA equivalent.

After spending some time scrolling through AMD’s documentation, I still decided that VM_HSAVE_PA seems
to be the best way forward and decided to tackle these problems one by one.

After dumping the host save area of a normal KVM guest running on an AMD EPYC 7351P CPU, the first
problem goes away quickly: As it turns out, the host save area has the same layout as a normal VMCB with
only a couple of relevant fields initialized. Even better, the initialized fields include all the saved host
information documented in the AMD manual so the fear that all interesting host state is stored in on-chip
memory seems to be unfounded.

Saving Host State. To ensure that the host can resume operation after #VMEXIT, VMRUN
saves at least the following host state information:

● CS.SEL, NEXT_RIP—The CS selector and rIP of the instruction following the VMRUN.
On #VMEXIT the host resumes running at this address.

● RFLAGS, RAX—Host processor mode and the register used by VMRUN to address
the VMCB.

● SS.SEL, RSP—Stack pointer for host

The Exploit

https://www.amd.com/system/files/TechDocs/52740_16h_Models_30h-3Fh_BKDG.pdf

● CRO, CR3, CR4, EFER—Paging/operating mode for host
● IDTR, GDTR—The pseudo-descriptors. VMRUN does not save or restore the host

LDTR.
● ES.SEL and DS.SEL.

Under the mistaken assumption that I solved the problem of creating a fake but valid host save area, I
decided to look into building an infoleak that gives me the ability to translate GPAs to HPAs. A couple hours
of manual reading led me to an AMD-specific performance monitoring feature called Instruction Based
Sampling (IBS). When IBS is enabled by writing the right magic invocation to a set of MSRs, it samples
every Nth instruction that is executed and collects a wide range of information about the instruction. This
information is logged in another set of MSRs and can be used to analyze the performance of any piece of
code running on the CPU. While most of the documentation for IBS is pretty sparse or hard to follow, the
very useful open source project AMD IBS Toolkit contains working code, a readable high level description of
IBS and a lot of useful references.

IBS supports two different modes of operation, one that samples Instruction fetches and one that samples
micro-ops (which you can think of as the internal RISC representation of more complex x64 instructions).
Depending on the operation mode, different data is collected. Besides a lot of caching and latency
information that we don’t care about, fetch sampling also returns the virtual address and physical address of
the fetched instruction. Op sampling is even more useful as it returns the virtual address of the underlying
instruction as well as virtual and physical addresses accessed by any load or store micro op.

Interestingly, IBS does not seem to care about the virtualization context of its user and every physical
address returned by it is an HPA (of course this is not a problem outside of this exploit as guest accesses to
the IBS MSR’s will normally be restricted). The wide range of data returned by IBS and the fact that it’s
completely driven by MSR reads and writes make it the perfect tool for building infoleaks for our exploit.

Building a GPA -> HPA leak boils down to enabling IBS ops sampling, executing a lot of instructions that
access a specific memory page in our VM and reading the IBS_DC_PHYS_AD MSR to find out its HPA:

// This function leaks the HPA of a guest page using

// AMD's Instruction Based Sampling. We try to sample

// one of our memory loads/writes to *p, which will

// store the physical memory address in MSR_IBC_DH_PHYS_AD

static u64 leak_guest_hpa(u8 *p) {

 volatile u8 *ptr = p;

 u64 ibs = scatter_bits(0x2, IBS_OP_CUR_CNT_23) |

 scatter_bits(0x10, IBS_OP_MAX_CNT) | IBS_OP_EN;

 while (true) {

 wrmsr(MSR_IBS_OP_CTL, ibs);

 u64 x = 0;

 for (int i = 0; i < 0x1000; i++) {

 x = ptr[i];

 ptr[i] += ptr[i - 1];

 ptr[i] = x;

 if (i % 50 == 0) {

 u64 valid = rdmsr(MSR_IBS_OP_CTL) & IBS_OP_VAL;

 if (valid) {

 u64 op3 = rdmsr(MSR_IBS_OP_DATA3);

 if ((op3 & IBS_ST_OP) || (op3 & IBS_LD_OP)) {

 if (op3 & IBS_DC_PHY_ADDR_VALID) {

 printf("[x] leak_guest_hpa: %lx %lx %lx\n", rdmsr(MSR_IBS_OP_RIP),

 rdmsr(MSR_IBS_DC_PHYS_AD), rdmsr(MSR_IBS_DC_LIN_AD));

 return rdmsr(MSR_IBS_DC_PHYS_AD) & ~(0xFFF);

 }

 }

 wrmsr(MSR_IBS_OP_CTL, ibs);

 }

 }

 }

 wrmsr(MSR_IBS_OP_CTL, ibs & ~IBS_OP_EN);

 }

}

Using this infoleak primitive, I started to create a fake host save area by preparing my own page tables (for
pointing CR3 at them), interrupt descriptor tables and segment descriptors and pointing RIP to a primitive
shellcode that would write to the serial console. Of course, my first tries immediately crashed the whole
system and even after spending multiple days to make sure everything was set up correctly, the system
would crash immediately once I pointed the hsave MSR at my own location.

https://github.com/jlgreathouse/AMD_IBS_Toolkit

After getting frustrated with the total lack of progress, watching my server reboot for the hundredth time,
trying to come up with a different exploitation strategy for two weeks and learning about the surprising
regularity of physical page migrations on Linux, I realized that I made an important mistake. Just because the
CPU initializes all the expected fields in the host save area, it is not safe to assume that these fields are
actually used for restoring the host context. Slow trial and error led to the discovery that my AMD EPYC CPU
ignores everything in the host save area besides the values of the RIP, RSP and RAX registers.

While this register control would make a local privilege escalation straightforward, escaping the VM boundary
is a bit more complicated. RIP and RSP control make launching a kernel ROP chain the next logical step, but
this requires us to first break the host kernel's address randomization and to find a way to store controlled
data at a known host virtual address (HVA).

Fortunately, we have IBS as a powerful infoleak building primitive and can use it to gather all required
information in a single run:

● Leaking the host kernel's (or more specifically kvm-amd.ko’s) base address can be done by
enabling IBS sampling with a small sampling interval and immediately triggering a VM exit. When
VM execution continues, the IBS result MSRs will contain the HVA of instructions executed by KVM
during the exit handling.

● The most powerful way to store data at a known HVA is to leak the location of the kernel’s linear
mapping (also known as physmap), a 1:1 mapping of all physical pages on the system. This gives
us a GPA->HVA translation primitive by first using our GPA->HPA infoleak from above and then
adding the HPA to the physmap base address. Leaking the physmap is possible by sampling micro
ops in the host kernel until we find a read or write operation, where the lower ~30 bits of the
accessed virtual address and physical address are identical.

Having all these building blocks in place, we could now try to build a kernel ROP chain that executes some
interesting payload. However, there is one important caveat. When we take over execution after a vmexit,
the system is still in a somewhat unstable state. As mentioned above, SVM’s context switching is very
minimal and we are at least one VMLOAD instruction and reenabling of interrupts away from a usable
system. While it is surely possible to exploit this bug and to restore the original host context using a
sufficiently complex ROP chain, I decided to find a way to run my own code instead.

A couple of years ago, the Linux physmap was still mapped executable and executing our own code would
be as simple as jumping to a physmap mapping of one of our guest pages. Of course, that is not possible
anymore and the kernel tries hard to not have any memory pages mapped as writable and executable. Still,
page protections only apply to virtual memory accesses so why not use an instruction that directly writes
controlled data to a physical address? As you might remember from our initial discussion of SVM earlier in
this chapter, SVM supports an instruction called VMSAVE to store hidden guest state (or host state) in a
VMCB. Similar to VMRUN, VMSAVE takes a physical address to a VMCB stored in the RAX register as an
implicit argument. It then writes the following register state to the VMCB:

● FS, GS, TR, LDTR
● KernelGsBase
● STAR, LSTAR, CSTAR, SFMASK
● SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

For us, VMSAVE is interesting for a couple of reasons:

● It is used as part of KVM’s normal SVM exit handler and can be easily integrated into a minimal
ROP chain.

● It operates on physical addresses, so we can use it to write to an arbitrary memory location
including KVM’s own code.

● All written registers still contain the guest values set by our VM, allowing us to control the written
content with some restrictions

VMSAVE’s biggest downside as an exploitation primitive is that RAX needs to be page aligned, reducing our
control of the target address. VMSAVE writes to the memory offsets 0x440-0x480 and 0x600-0x638 so we
need to be careful about not corrupting any memory that’s in use.
In our case this turns out to be a non-issue, as KVM contains a couple of code pages where functions that
are rarely or never used (e.g cleanup_module or SEV specific code) are stored at these offsets.

While we don’t have full control over the written data and valid register values are somewhat restricted, it is
still possible to write a minimal stage0 shellcode to an arbitrary page in the host kernel by filling guest MSRs
with the right values. My exploit uses the STAR, LSTAR and CSTAR registers for this which are written to the
physical offsets 0x400, 0x408 and 0x410. As all three registers need to contain canonical addresses, we can
only use parts of the registers for our shellcode and use relative jumps to skip the unusable parts of the
STAR and LSTAR MSRs:

 // mov cr0, rbx; jmp

 wrmsr(MSR_STAR, 0x00000003ebc3220f);

 // pop rdi; pop rsi; pop rcx; jmp

 wrmsr(MSR_LSTAR, 0x00000003eb595e5fULL);

 // rep movsb; pop rdi; jmp rdi;

 wrmsr(MSR_CSTAR, 0xe7ff5fa4f3);

https://en.wikipedia.org/w/index.php?title=X86-64#Virtual_address_space_details

The above code makes use of the fact that we control the value of the RBX register and the stack when we
return to it as part of our initial ROP chain. First, we copy the value of RBX (0x80040033) into CR0, which
disables Write Protection (WP) for kernel memory accesses. This makes all of the kernel code writable on
this CPU allowing us to copy a larger stage1 shellcode to an arbitrary unused memory location and jump to
it.

Once the WP bit in cr0 is disabled and the stage1 payload executes, we have a wide range of options. For
my proof-of-concept exploit I decided on a somewhat boring but easy-to-implement approach to spawn a
random user space command: The host is still in a very weird state so our stage1 payload can’t directly call
into other kernel functions, but we can easily backdoor a function pointer which will be called at some later
point in time. KVM uses the kernel’s global workqueue feature to regularly synchronize a VM’s clock between
different vCPUs. The function pointer responsible for this work is stored in the (per VM) kvm->arch data
structure as kvm->arch.kvmclock_update_work. The stage1 payload overrides this function pointer with the
address of a stage2 payload. To put the host into a usable state it then sets the VM_HSAVE_PA MSR back
to its original value and restores RSP and RIP to call the original vmexit handler.

The final stage2 payload executes at some later point in time as part of the kernel global work queue and
uses the call_usermodehelper to run an arbitrary command with root privileges.

Let’s put all of this together and walk through the attacks step-by-step:
1. Prepare the stage0 payload by splitting it up and setting the right guest MSRs.
2. Trigger the TOCTOU vulnerability in nested_svm_vmrun and free the MSR permission bitmap by

disabling the SVME bit in the EFER MSR.
3. Wait for the pages to be reused and initialized to 0 to get unrestricted MSR access.
4. Prepare a fake host save area, a stack for the initial ROP chain and a staging memory area for the

stage1 and stage2 payloads.
5. Leak the HPA of the host save area, the HVA addresses of the stack and staging page and the

kvm-amd.ko’s base address using the different IBS infoleaks.
6. Redirect execution to the VMSAVE gadget by setting RIP, RSP and RAX in the fake host save

area, pointing the VM_HSAVE_PA MSR at it and triggering a VM exit.
7. VMSAVE writes the stage0 payload to an unused offset in kvm-amd’s code segment, when the

gadget returns stage0 gets executed.
8. stage0 disables Write Protection in CR0 and overwrites an unused executable memory location

with the stage1 and stage2 payloads, before jumping to stage1.
9. stage1 overwrites kvm->arch.kvmclock_update_work.work.func with a pointer to stage2 before

restoring the original host context.
10. At some later point in time kvm->arch.kvmclock_update_work.work.func is called as part of the

global kernel work_queue and stage2 spawns an arbitrary command using call_usermodehelper.

Interested readers should take a look at the heavily documented proof-of-concept exploit for the actual
implementation.

This blog post describes a KVM-only VM escape made possible by a small bug in KVM’s AMD-specific code
for supporting nested virtualization. Luckily, the feature that made this bug exploitable was only included in
two kernel versions (v5.10, v5.11) before the issue was spotted, reducing the real-life impact of the
vulnerability to a minimum. The bug and its exploit still serve as a demonstration that highly exploitable
security vulnerabilities can still exist in the very core of a virtualization engine, which is almost certainly a
small and well audited codebase. While the attack surface of a hypervisor such as KVM is relatively small
from a pure LoC perspective, its low level nature, close interaction with hardware and pure complexity makes
it very hard to avoid security-critical bugs.

While we have not seen any in-the-wild exploits targeting hypervisors outside of competitions like Pwn2Own,
these capabilities are clearly achievable for a well-financed adversary. I’ve spent around two months on this
research, working as an individual with only remote access to an AMD system. Looking at the potential ROI
on an exploit like this, it seems safe to assume that more people are working on similar issues right now and
that vulnerabilities in KVM, Hyper-V, Xen or VMware will be exploited in-the-wild sooner or later.

What can we do about this? Security engineers working on Virtualization Security should push for as much
attack surface reduction as possible. Moving complex functionality to memory-safe user space components
is a big win even if it does not help against bugs like the one described above. Disabling unneeded or
unreviewed features and performing regular in-depth code reviews for new changes can further reduce the
risk of bugs slipping by.

Hosters, cloud providers and other enterprises that are relying on virtualization for multi-tenancy isolation
should design their architecture in way that limits the impact of an attacker with an VM escape exploit:

● Isolation of VM hosts: Machines that host untrusted VMs should be considered at least partially
untrusted. While a VM escape can give an attacker full control over a single host, it should not be
easily possible to move from one compromised host to another. This requires that the control plane
and backend infrastructure is sufficiently hardened and that user resources like disk images or
encryption keys are only exposed to hosts that need them. One way to limit the impact of a VM
escape even further is to only run VMs of a specific customer or of a certain sensitivity on a single
machine.

Conclusion

https://bugs.chromium.org/p/project-zero/issues/detail?id=2177#c5

Older PostHome

Subscribe to: Post Comments (Atom)

Posted by Ryan at 8:58 AM

● Investing in detection capabilities: In most architectures, the behavior of a VM host should be very
predictable, making a compromised host stick out quickly once an attacker tries to move to other
systems. While it’s very hard to rule out the possibility of a vulnerability in your virtualization stack,
good detection capabilities make life for an attacker much harder and increase the risk of quickly
burning a high-value vulnerability. Agents running on the VM host can be a first (but bypassable)
detection mechanism, but the focus should be on detecting unusual network communication and
resource accesses.

Sign out

 Notify me

Comment as: jeanphilippe.au

PublishPublish PreviewPreview

Enter your comment...

No comments:

Post a Comment

Simple theme. Powered by Blogger.

https://googleprojectzero.blogspot.com/2021/05/fuzzing-ios-code-on-macos-at-native.html
https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/feeds/8408446653514773445/comments/default
https://www.blogger.com/profile/17011901605865574886
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8408446653514773445&target=email
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8408446653514773445&target=blog
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8408446653514773445&target=twitter
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8408446653514773445&target=facebook
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8408446653514773445&target=pinterest
https://googleprojectzero.blogspot.com/logout?d=https://www.blogger.com/logout-redirect.g?blogID%3D4838136820032157985%26postID%3D8408446653514773445
https://www.blogger.com/profile/03646385169992985369
https://www.blogger.com/

