
Autodiscovering the Great Leak

by Amit Serper (https://www.guardicore.com/author/amit-serper/)

Executive Summary

Autodiscover, a protocol used by Microsoft Exchange for automatic

con�iguration of clients such as Microsoft Outlook, has a design �law that

causes the protocol to “leak” web requests to Autodiscover domains outside of

the user’s domain but in the same TLD (i.e. Autodiscover.com).

Guardicore Labs acquired multiple Autodiscover domains with a TLD su�ix and

set them up to reach a web server that we control. Soon thereafter, we detected

a massive leak of Windows domain credentials that reached our server.

Between April 16th, 2021 to August 25th, 2021 we have captured:

372,072 Windows domain credentials in total.

96,671 UNIQUE credentials that leaked from various applications such as

Microsoft Outlook, mobile email clients and other applications interfacing

with Microsoft’s Exchange server.

This is a severe security issue, since if an attacker can control such domains or

has the ability to “sniff” tra�ic in the same network, they can capture domain

credentials in plain text (HTTP basic authentication) that are being transferred

(https://www.guardicore.com/)



https://www.guardicore.com/author/amit-serper/
https://www.guardicore.com/


over the wire. Moreover, if the attacker has DNS-poisoning capabilities on a

large scale (such as a nation-state attacker), they could systematically syphon

out leaky passwords through a large-scale DNS poisoning campaign based on

these Autodiscover TLDs.

Additionally, we have developed an attack – “The ol’ switcheroo” – which

downgrades a client’s authentication scheme from a secure one (OAuth, NTLM)

to HTTP Basic Authentication where credentials are sent in clear text.

Introduction

As a part of the ongoing security research efforts by the Guardicore Labs team, we

have discovered an interesting case of credential leak affecting a large number of

people and organizations worldwide.

The credentials that are being leaked are valid Windows domain credentials used to

authenticate to Microsoft Exchange servers. The source of the leaks is comprised of

two issues:

�. The design of Microsoft’s Autodiscover protocol (and the “back-off” algorithm,

speci�ically).

�. Poor implementation of this protocol in some applications.

As mentioned, Microsoft’s Autodiscover protocol (https://docs.microsoft.com/en-

us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange)

was meant to ease the con�iguration of Exchange clients such as Microsoft Outlook.

The protocol’s goal is to make an end-user be able to completely con�igure their

Outlook client solely by providing their username and password and leave the rest of

the con�iguration to Microsoft Exchange’s Autodiscover protocol. It is important to

understand that since Microsoft Exchange is part of the “Microsoft domain suite” of

solutions, the credentials that are necessary to login to one’s Exchange-based inbox

are in most cases their domain credentials. The implications of a domain credential

leak in such scale are massive, and can put organizations in peril. Especially in today’s

ransomware-attacks ravaged-world – the easiest way for an attacker to gain entry into

an organization is to use legitimate and valid credentials.

In 2017, researchers from Shape Security published a paper

(https://www.blackhat.com/docs/asia-17/materials/asia-17-Nesterov-All-Your-Emails-

Belong-To-Us-Exploiting-Vulnerable-Email-Clients-Via-Domain-Name-Collision-

wp.pdf) about how Autodiscover implementations on email clients on mobile phones

(such as Samsung’s mail client on Android and Apple Mail on iOS) can cause such

leaks (CVE-2016-9940, CVE-2017-2414). The vulnerabilities disclosed by Shape

Security were patched, yet, here we are in 2021 with a signi�icantly larger threat

landscape, dealing with the exact same problem only with more third-party

applications outside of email clients. These applications are exposing their users to

the same risks We have initiated responsible disclosure processes with some of the

https://docs.microsoft.com/en-us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange
https://www.blackhat.com/docs/asia-17/materials/asia-17-Nesterov-All-Your-Emails-Belong-To-Us-Exploiting-Vulnerable-Email-Clients-Via-Domain-Name-Collision-wp.pdf


the same risks. We have initiated responsible disclosure processes with some of the

vendors affected. More details on that aspect will be released as a second part to this

paper.

(https://www.guardicore.com/blog/stopping-ransomware-with-segmentation/)

This document will detail how the aforementioned protocol’s design issues cause

severe credential leak that gives us the ability to receive tens-of-thousands of valid

Windows domain credentials without sending a single packet.

What is Autodiscover?

Exchange’s Autodiscover protocol was made to provide a way for clients to easily

con�igure their Exchange client applications. Usually, in order to con�igure a mail

client, the user has to con�igure multiple settings:

Username and password.

The hostnames/IP addresses of the mail/Exchange servers.

In some cases, additional settings are required (Miscellaneous LDAP settings,

WebDAV calendars, etc.).

The protocol has several iterations, versions and modes – their full documentation

can be found on Microsoft’s website (https://docs.microsoft.com/en-

us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange),

however, in this article, we will discuss a speci�ic implementation of Autodiscover

based on the POX XML protocol. Once the user adds a new Microsoft Exchange

account to Outlook, the user will receive a prompt that asks for their username and

password:

https://www.guardicore.com/blog/stopping-ransomware-with-segmentation/
https://docs.microsoft.com/en-us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange


Microsoft Outlook auto account setup

Once the user �ills in all of the details, Outlook will then try to use Autodiscover in

order to con�igure the client. This stage in the process looks like this:

Microsoft Outlook auto account setup process

However, in order to truly understand how Autodiscover works, we need to know

what happens “behind the scenes”:

�. The client parses the email address supplied by the user – amit@example.com.

�. The client then tries to build an Autodiscover URL based on the email address

with the following format:



https://Autodiscover.example.com/Autodiscover/Autodiscover.xml

http://Autodiscover.example.com/Autodiscover/Autodiscover.xml

https://example.com/Autodiscover/Autodiscover.xml

http://example.com/Autodiscover/Autodiscover.xml

In the case that none of these URLs are responding, Autodiscover will start its “back-

off” procedure. This “back-off” mechanism is the culprit of this leak because it is

always trying to resolve the Autodiscover portion of the domain and it will always try

to “fail up,” so to speak. Meaning, the result of the next attempt to build an

Autodiscover URL would be:

http://Autodiscover.com/Autodiscover/Autodiscover.xml. This means that

whoever owns Autodiscover.com will receive all of the requests that cannot reach

the original domain. For more information about how Autodiscover works, please

check out Microsoft’s documentation (https://docs.microsoft.com/en-

us/exchange/client-developer/web-service-reference/pox-autodiscover-request-for-

exchange?redirectedfrom=MSDN).

https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/pox-autodiscover-request-for-exchange?redirectedfrom=MSDN


Autodiscover "back-off" process

Abusing the Leak

In order to see if the Autodiscover leak scenario is even a viable one, we have

purchased the following domains:

Autodiscover.com.br – Brazil

Autodiscover.com.cn – China

Autodiscover.com.co – Columbia

Autodiscover.es – Spain

Autodiscover.fr – France

Autodiscover.in – India

Autodiscover it – Italy



Autodiscover.it  Italy

Autodiscover.sg – Singapore

Autodiscover.uk – United Kingdom

Autodiscover.xyz

Autodiscover.online

Autodiscover.cc

Autodiscover.studio

autodiscover.capital

autodiscover.club

autodiscover.company

autodiscover.jp       

autodiscover.me       

autodiscover.mx       

autodiscover.ventures

Later, these domains were assigned to a webserver in our control and we were simply

waiting for web requests for various Autodiscover endpoints to arrive. To our

surprise, we started seeing signi�icant amounts of requests to Autodiscover

endpoints from various domains, IP addresses and clients. The most notable thing

about these requests was that they requested the relative path of

/Autodiscover/Autodiscover.xml with the Authorization header already populated

with credentials in HTTP basic authentication.

example of a simple HTTP GET request with the Authorization header already

populated with credentials

Generally, web requests should not be sent blindly pre-authenticated, but rather

following the HTTP authentication process:

�. A client requests access to a protected resource.

�. The web server returns a dialog box that requests the username and password

(in accordance with the supported authentication methods, in our case, basic

authentication).

�. The client submits the username and password to the server.



�. The server authenticates the user and returns the requested resource.

HTTP basic authentication process illustrated

As can be seen in the following excerpt, the hostnames appearing in the log

(scrubbed for privacy reasons) are the domains from which the Autodiscover clients

were trying to authenticate to, along with their respected username and passwords:

 

2021–05–18 03:30:45 W3SVC1 instance-2 10.142.0.4 GET /Autodiscover/Autodiscover.xml – 
80 – <IP address scrubbed> HTTP/1.1 Microsoft+Office/16.0+
(Windows+NT+10.0;+Microsoft+Outlook+16.0.13901;+Pro) – -<Victim domain scrubbed> 404 0 

2 1383 301 265 <Victim domain scrubbed> Basic+<base64 encoded credentials scrubbed>= – 
– 
2021–05–18 03:30:52 W3SVC1 instance-2 10.142.0.4 GET /Autodiscover/Autodiscover.xml – 
80 – <IP address scrubbed> HTTP/1.1 Microsoft+Office/16.0+
(Windows+NT+10.0;+Microsoft+Outlook+16.0.13901;+Pro) – – <Victim domain scrubbed> 404 

0 2 1383 301 296 <Victim domain scrubbed> Basic+<base64 encoded credentials scrubbed> – 
– 
2021–05–18 03:30:55 W3SVC1 instance-2 10.142.0.4 GET /Autodiscover/Autodiscover.xml – 
80 – <IP address scrubbed> HTTP/1.1 Microsoft+Office/16.0+
(Windows+NT+10.0;+Microsoft+Outlook+16.0.13901;+Pro) – – <Victim domain scrubbed> 404 

0 2 1383 296 328 <Victim domain scrubbed> Basic+<base64 encoded credentials scrubbed> – 
– 
2021–05–18 03:31:19 W3SVC1 instance-2 10.142.0.4 GET /Autodiscover/Autodiscover.xml – 
80 – <IP address scrubbed> HTTP/1.1 Microsoft+Office/16.0+
(Windows+NT+10.0;+Microsoft+Outlook+16.0.13901;+Pro) – – <Victim domain scrubbed> 404 

0 2 1383 306 234 <Victim domain scrubbed> Basic+<base64 encoded credentials scrubbed> – 
–

The interesting issue with a large amount of the requests that we received was that

there was no attempt on the client’s side to check if the resource is available, or even

exists on the server, before sending an authenticated request. Usually, the way to

implement such a scenario would be to �irst check if the resource that the client is

requesting is valid, since it could be non existent (which will trigger an HTTP 404

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/404


g gg

error (https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/404)) or it may be

password protected (which will trigger an HTTP 401 error code

(https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401)) as seen in the

above diagram.

Between Apr 16, 2021 to Aug 25, 2021  we have captured a large number of

credentials this way, needless to say, without sending a single packet other than

what’s required to establish an HTTP/HTTPS session between our server and the

miscellaneous clients. 

The following data was collected between April 20th 2021 to August 25th 2021:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/404
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401


While examining the domains from these leaked credentials, we were able to �ind

credentials from various companies across multiple verticals:

The ol' switcheroo

Illustation of the ol' switcheroo attack

When observing the logs of the HTTP server, we can clearly see that the client is

successfully downgraded after receiving the HTTP 401 response from the server,

telling it to use HTTP Basic Authentication:



(https://www.guardicore.com/wp-content/uploads/switcheroo.jpg)

Successful ol' switcheroo attack (Click image to enlarge)

Note: The empty bearer token is sent as a part of the realm Autodiscovery process

which is discussed further in Microsoft’s documentation

(https://docs.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-

xoauth/f622dee1-a9a7-436e-b44e-6ecf8f536f77). On the victim’s side ,however, it is 

di�icult to even realize that the user is experiencing any sort of attack. When the

victim is being redirected to our Autodiscover server due to the leak, a security alert

pops up:

Security alert prompted by Microsoft Outlook

This warning indicates that while the certi�icate is valid, it is self-signed and should

not be trusted. However, this could be easily avoided by deploying an actual SSL

certi�icate. In our case, we deployed a LetsEncrypt (https://letsencrypt.org/)

certi�icate within seconds, which remediated the issue of the SSL warning being

displayed.

https://www.guardicore.com/wp-content/uploads/switcheroo.jpg
https://docs.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-xoauth/f622dee1-a9a7-436e-b44e-6ecf8f536f77
https://letsencrypt.org/


Installing LetsEncrypt SSL certi�icates with WinAcme

autodiscover.sg is now secured with a valid certi�icate

Once a secure session has been established, the victim will now see this legitimate

authentication prompt displayed by Microsoft Outlook:



Basic authentication dialog displayed in Outlook as a result of a successful ol'

switcheroo attack

This is the last stage of this attack – the victim will input their credentials into this

dialog box, which in turn, will send the credentials to our web server. The credentials

now appear in our logs.

Mitigation

Mitigating the issue of Autodiscover leaks is important as we have previously

demonstrated. In order to mitigate this issue, two separate approaches are required:

�. One approach needs to be implemented by the general public who use

Exchange-based technologies such as Outlook or ActiveSync

(https://en.wikipedia.org/wiki/ActiveSync) (Microsoft’s mobile Exchange

synchronization protocol) and the other approach should be implemented by

software developers/vendors who are implementing the Autodiscover protocol

in their products:

�. For the general public:Make sure that you are actively blocking Autodiscover.

domains (such as Autodiscover.com/Autodiscover.com.cn, etc) in your �irewall.

Guardicore Centra's DNS Security allows creating block rules for Autodiscover

domain names

https://en.wikipedia.org/wiki/ActiveSync


When deploying/con�iguring Exchange setups, make sure that support for basic

authentication is disabled – using HTTP basic authentication is the same as

sending a password in clear text over the wire.

A comprehensive textual list of all top level domains can be found in the

following url: https://data.iana.org/TLD/tlds-alpha-by-domain.txt

(https://data.iana.org/TLD/tlds-alpha-by-domain.txt)

We have prepared a txt �ile with all possible Autodiscover.TLD domains

which can be added to your local hosts �ile or �irewall con�iguration in

order to mitigate the risk of having such Autodiscover domains resolve.

Please check our github repository for more information: 

https://github.com/guardicore/labs_campaigns/tree/master/Autodiscover

(https://github.com/guardicore/labs_campaigns/tree/master/Autodiscover)

3. For software vendors and developers:

Make sure that when you are implementing the Autodiscover protocol in your

product you are not letting it “fail upwards”, meaning that domains such as

“Autodiscover.” should never be constructed by the “back-off” algorithm.

Conclusion

In this document, we discussed the implications of the basic design �law within the

Autodiscover protocol (the “back-off” algorithm) and demonstrated that if an attacker

controls top-level Autodiscover domains  (or if the attacker has the ability to conduct

a DNS-poisoning attack using these domains), they can easily consume valid domain

credentials from these leaky Autodiscover requests.

Oftentimes, attackers will try to cause users to send them their credentials by

applying various techniques, whether technical or through social engineering.

However, this incident shows us that passwords can be leaked outside of the

organization’s perimeter by a protocol that was meant to streamline the IT

department’s operations with regards to email client con�iguration without anyone

from the IT or security department even being aware of it, which emphasises the

importance of proper segmentation and Zero trust.  

We, at Guardicore Labs, are continuing our ongoing efforts to secure networks,

applications, and protocols alike by �inding, alerting and disclosing such issues.

Get The Latest Guardicore News

Sign up to read about the latest in cyber security and learn from the Guardicore team with insights

about trends and reducing your risk.

Email Address *

https://data.iana.org/TLD/tlds-alpha-by-domain.txt
https://github.com/guardicore/labs_campaigns/tree/master/Autodiscover


SUBSCRIBE

FOLLOW US ON

 (https://www.linkedin.com/company/guardicore)

 (https://twitter.com/guardicore)  (https://www.facebook.com/guardicore/)

https://www.linkedin.com/company/guardicore
https://twitter.com/guardicore
https://www.facebook.com/guardicore/
https://www.guardicore.com/infectionmonkey/breach-and-attach-simulation/


(https://www.guardicore.com/infectionmonkey/breach-and-attach-simulation/)

Cyber Threat Intelligence

Get unique information on malicious Internet assets – IP addresses and domain – detected by

Guardicore.

View Dashboard (https://threatintelligence.guardicore.com/)

SHARE THIS ARTICLE:

   

(https://www.guardicore.com/labs/validate-
(htt

ps:/

/w

ww.

link

edi

n.c

om/

co

mp

any

(htt

ps:/

/twi

tter.

co

m/

gua

rdic

(htt

ps:/

/w

ww.

fac

ebo

ok.

co

m/g

uar

(htt

ps:/

/w

ww.

you

tub

e.c

om/

cha

nne

l/U

Cxu

1w

G7I

O4t

   

HOME(https://www.guardicore.com/) COMPANY(/company/) RESOURCES(/resources/)

https://www.guardicore.com/infectionmonkey/breach-and-attach-simulation/
https://threatintelligence.guardicore.com/
https://www.guardicore.com/labs/validate-your-ransomware-defense-with-infection-monkey/
https://www.linkedin.com/company/guardicore
https://twitter.com/guardicore
https://www.facebook.com/guardicore/
https://www.youtube.com/channel/UCxu1wG7IO4tfW9HFqV08YOw/featured
https://www.guardicore.com/
https://www.guardicore.com/company/
https://www.guardicore.com/resources/
https://www.guardicore.com/certifications/
https://www.guardicore.com/support/
https://www.guardicore.com/contact-us/


any

/gu

ardi

cor

e)

rdic

ore)

uar

dic

ore

/)

O4t

fW9

HFq

V08

YO

w/f

eat

ure

d)

CERTIFICATIONS(/certi�ications/) SUPPORT(/support/) CONTACT US(/contact-us/)

CUSTOMER PORTAL(https://customers.guardicore.com/) TERMS OF USE(/website-terms-of-use/)

PRIVACY POLICY(/privacy-policy/) SOFTWARE TERMS OF USE(/software-terms-and-conditions/) SECURITY(/security/)

© 2021 Guardicore

https://www.linkedin.com/company/guardicore
https://twitter.com/guardicore
https://www.facebook.com/guardicore/
https://www.youtube.com/channel/UCxu1wG7IO4tfW9HFqV08YOw/featured
https://www.guardicore.com/certifications/
https://www.guardicore.com/support/
https://www.guardicore.com/contact-us/
https://customers.guardicore.com/
https://www.guardicore.com/website-terms-of-use/
https://www.guardicore.com/privacy-policy/
https://www.guardicore.com/software-terms-and-conditions/
https://www.guardicore.com/security/

