
index : downlevel-driver-enabler master switch

Load Windows 10 drivers on Windows 7 and 8.1 Jason A.
Donenfeld

about summary refs log tree commit diff stats log msg

 search

by Jason A. Donenfeld (zx2c4)

"Downlevel Driver Enabler" enables the use of Windows 10 PnP signed drivers on
Windows 7 and 8.1.

Last year, Microsoft announced that they would no longer provide intermediate
certificates for
Authenticode-signed kernel drivers after June 1, 2021. This
prompted widespread panic, as it effectively
meant that it would be now
impossible for many drivers to issue updates — for reliability, security, or
otherwise — on Windows 7 and 8.1. OSR ran a blog series
on this, culminating in a final post in April
indicating that after much
haggling with Microsoft PMs, the prospects of any change to the policy is
hopeless, and the situation is a "lost cause". R.I.P. Windows 7 and 8.1 driver
updates? Not at all, and
that is what this repository presents.

Before Windows 10 1607, there were two ways of signing drivers: Authenticode
signatures, in which
you pay a CA for the ability to sign your own drivers, or
Windows Hardware Compatibility Publisher
signatures, in which you either run
your driver through a battery of hardware tests, called WHLK (which
OSR points
out is impossible for most driver types), and submit the results of those tests
to Microsoft, or
more recently, simply ask Microsoft for an "attestation
signature", which amounts to more or less the
same thing without the testing
headache. At some point Microsoft was going to require WHLK testing
for Windows
Server, but eventually gave up on that, so now attestation signatures are fine
for both
Windows 10 Client and Windows 10 Server (2016/2019). But attestation
is only for Windows 10, which
means if you want a Windows Hardware
Compatibility Publisher signature on Windows 7 and 8.1, you
must go through the
testing that may well not be available for your driver.

As an aside, it turns out you can actually use an old Authenticode certificate
basically indefinitely —
beyond the June 1, 2021 expiration date — by
timestamping it using a bogus timestamping server, and
then adding the bogus CA
used to generate those timestamp signatures to the system's trust store.
Evidently the requirements of timestamp CAs are less stringent than those of
code signing CAs. While
there's arguably a "safe" way of doing that, (ab)using
expired or intermediately expired Authenticode
certificates seems to go against
the spirit of the requirements, and so it seems a bit too dirty for
production.
One could imagine getting a certificate consequently blacklisted with tricks
like that.

So, with WHLK not available for many drivers, and Authenticode no longer viable
after June 1, 2021, it
would seem the only way forward for driver updates of
any kind is on Windows 10, using attestation
signatures, and just giving up
entirely on trying to ship security or reliability updates to Windows 7 and
8.1. That laziness is appealing, but also not viable for real world systems
that still require the old
operating systems.

Downlevel Driver Enabler

Driver signing background

http://www.zx2c4.com/
https://git.zx2c4.com/
https://git.zx2c4.com/downlevel-driver-enabler/
https://git.zx2c4.com/downlevel-driver-enabler/about/
https://git.zx2c4.com/downlevel-driver-enabler/
https://git.zx2c4.com/downlevel-driver-enabler/refs/
https://git.zx2c4.com/downlevel-driver-enabler/log/
https://git.zx2c4.com/downlevel-driver-enabler/tree/
https://git.zx2c4.com/downlevel-driver-enabler/commit/
https://git.zx2c4.com/downlevel-driver-enabler/diff/
https://git.zx2c4.com/downlevel-driver-enabler/stats/
https://www.osr.com/blog/2020/10/15/microsoft-driver-updates-allowed-win7-win8/

It turns out that Windows 7 and 8.1 will load drivers that have been signed
using the Windows 10
attestation service, but only if they are non-PnP (i.e. do
not use an .inf and .cat file). That
means Windows 7 and 8.1 developers of
non-PnP drivers can simply transition to the Windows 10
attestation service
after June 1, 2021 and all will be well. But PnP drivers — extremely common —
are
still left out in the cold. The distinction between the two driver types,
however, provides a hint.

A first inclination upon learning that non-PnP drivers can load but PnP drivers
cannot might be that one
could just write a little non-PnP rootkit driver to
fiddle around with whatever needs fiddling with, enabling
the PnP driver to
load subsequently. That, again, seems unfortunately too dirty for production,
and a bit
intellectually lazy too. Instead it is more interesting to understand
the actual difference between the non-
PnP case and PnP case.

The kernel verifies drivers when they are being loaded, in order to make sure
that untrusted code is not
loaded into the most trusted part of the OS. To this
end, the loader is concerned primarily with the
signature on the .sys driver
code itself, rather than any supporting userspace files around it. So, the
signature verifier — implemented in ci.dll — looks at the signature in the
 .sys and makes sure
that it chains up to a valid root in a valid way. In our
case here, the relevant chaining is that it ends in a
particular Microsoft
certificate related to the Windows Hardware Compatibility Publisher with proper
EKUs. If all checks out, then the driver loads. It is very simple. For this
reason, Windows 10 attestation
works on both Windows 10 and Windows 7 and 8.1.
The kernel's verifier cares that a driver is trusted by
Microsoft, since the
relevant security boundary here involves trust, rather than which particular
operating system it has been "certified" to run smoothly on. And if you think
about it, that makes sense:
the kernel is trying to enforce signatures as a
means of security, in order to have a trusted boundary.
The policy it cares
about is a simple security one, rather than anything fancier or more pedantic
about
certifications or WHLK test suites or anything like that. This is a real,
important security boundary.

The userspace PnP driver store is a bit more complicated. Here, it not only
cares about the signature of
the .sys driver code itself, but also all of the
other supporting userspace files, such as the .inf

file and other programs
the .inf file might instruct the OS to install. These supporting files are
listed
in a .cat file, and this .cat file is signed with the same type of
signature as the .sys driver
code file. But the .cat file also has some
additional fields, the most relevant of which is the
OSAttr field, which
lists the version of Windows with which the driver has been certified or
attested

to work. The userspace PnP driver installer, drvinst.exe , cares
about this, and will return
ERROR_SIGNATURE_OSATTRIBUTE_MISMATCH (0xE0000244)
if OSAttr lists a different

Windows version. This is not a security check.
It is a boring policy check, and one that is not even
uniformly applied, as the
kernel's verifier does not care about it, hence the case of non-PnP drivers
without OSAttr checks. And seeing that certification for Windows 7 and 8.1 is
not even possible
now, it is no longer even a sensible policy check. And, to
repeat again, this is very much not a security
check. It might now be
described as an outdated or obsolete policy check.

Many articles on similar topics would now attempt to dazzle you with colorful
screenshots of IDA Pro,
indicating the impenetrably byzantine nature of the
following reverse engineering work. In reality,
though, the analysis here is
not overly fancy: the PnP driver installer — drvinst.exe — calls into
setupapi.dll , which eventually finds its way to VerifyFile , which in turn
calls
WinVerifyTrust(DRIVER_ACTION_VERIFY) in wintrust.dll . If that
function returns
ERROR_APP_WRONG_OS (0x0000047F), then VerifyFile returns

Driver signature verification

ERROR_SIGNATURE_OSATTRIBUTE_MISMATCH (0xE0000244) to its caller. Looking at
wintrust.dll 's WinVerifyTrust , there is a dynamic function dispatch based
on the GUID

argument, which eventually leads to a call to DriverFinalPolicy ,
which in turn uses
CryptCATGetCatAttrInfo and CryptCATGetAttrInfo to read
the OSAttr field, and then

sees if it matches the running OS using
 _CheckVersionAttributeNEW , returning a boolean. If it
returns true,
 DriverFinalPolicy returns ERROR_SUCCESS (0x0); if not, it returns
ERROR_APP_WRONG_OS (0x0000047F).

So naturally one starts to consider different ways of injecting into system
services or patching binaries
on disk or corrupting the file system cache or
any of the usual techniques for such things, to turn either
ERROR_SIGNATURE_OSATTRIBUTE_MISMATCH or ERROR_APP_WRONG_OS into an
ERROR_SUCCESS . But fortunately, no such dirty technique is required. The
 wintrust.dll

framework already gives us everything we need for such
modifications, without having to resort to the
dark arts.

When we call WinVerifyTrust(DRIVER_ACTION_VERIFY) , the DRIVER_ACTION_VERIFY

constant is actually a GUID. wintrust.dll , in _CheckRegisteredProviders and
GetRegProvider , then looks in
HKLM\SOFTWARE\Microsoft\Cryptography\Providers\Trust\{function name}\{that g

at two values, $DLL and $Function . If $DLL is not wintrust.dll , it
calls
LoadLibraryW on it (not LoadLibraryExW ! yikes, but unrelated), and
then it calls
GetProcAddress on $Function . Finally it calls the resolved
function.

Thus, all we have to do is implement our own DriverFinalPolicy function that
calls the original
one in wintrust.dll , and converts a return value of
 ERROR_APP_WRONG_OS (0x0000047F) into
ERROR_SUCCESS (0x0). And presto, we
are done, and Windows 10 drivers can load successfully on

Windows 7 and 8.1. We
do this without having to break any real security barriers or do anything
dirty.
Rather, we use the nice dynamic dispatch facilities already available in
the OS to remove a now-
antiquated OS version policy check. In some sense,
Microsoft foresaw the need for pluggable policy
years in advance.

So, with the above in mind, the actual implementation is trivial. Compile the
~20 line shim.c file
in
this repository into a shim.dll , and then set the

registry key to the location of your shim.dll . When you are done, set the key
back to its original
value. (It is not recommended to leave the registry key
pointing to your shim.dll or to install your
shim.dll into system32 , as
multiple parties doing that will inevitably lead to the "dll hell" of

yore.)

A driver installation at the command line can be easily simplified to:

HKLM\SOFTWARE\Microsoft\Cryptography\Providers\Trust\FinalPolicy\{F750E6C3-38EE-1

> reg add HKLM\SOFTWARE\Microsoft\Cryptography\Providers\Trust\FinalPolicy\{F750E
> pnputil -i -a mydriver.inf

> reg add HKLM\SOFTWARE\Microsoft\Cryptography\Providers\Trust\FinalPolicy\{F750E

Usage

https://git.zx2c4.com/downlevel-driver-enabler/tree/shim.c

There is one caveat to consider, which is that the registry is a shared
resource, and so multiple
installers all using this method at once is going to
lead to issues. Therefore, when doing this, take a
mutex in a private namespace
(so as to mitigate the trivial unprivileged DoS). So, by convention, let us
do:

Boundary descriptor: L"DownlevelDriverEnabler"

Boundary descriptor SID: WinLocalSystemSid or WinBuiltinAdministratorsSid

Private namespace: L"DownlevelDriverEnabler" with security attributes
O:SYD:P(A;;GA;;;SY)(A;;GA;;;BA)S:(ML;;NWNRNX;;;HI) or
O:BAD:P(A;;GA;;;SY)(A;;GA;;;BA)S:(ML;;NWNRNX;;;HI)

Mutex name: L"DownlevelDriverEnabler\\ShimInProgress"

Take that mutex while shimming, and release it after the key has been restored
to WINTRUST.DLL . If
we all follow those rules, there will be safe and
reliable support for driver updates on Windows 7 and
8.1. Hopefully this turns
a rather hopeless situation into a productive one.

Looking at things a bit closer, it appears as though the userspace PnP verifier checks for Authenticode
signatures using the generic Authenticode check -- WINTRUST_ACTION_GENERIC_VERIFY_V2 .
This check is the normal Authenticode check that still remains valid for software in general, not just for
kernel drivers. That means it is possible to receive Windows 10 attested .sys. and .cat files,
and then simply re-sign the .cat file with a ordinary software Authenticode certificate. The still-valid
software Authenticode certificate will enable PnP installation verifier to proceed, and the correct
Microsoft signature on the .sys will allow the kernel to load it. In very brief tests, this appears to be
the case, though it does warrant a bit more testing, as setupapi still aborts with
CERT_E_UNTRUSTEDROOT (0x800B0109), despite letting the copy proceed, which on some

configurations could wind up being fatal. In general this might require a bit more surgery than the
above, but for others it could also prove a useful strategy.

Copyright © 1996 – 2021 Jason A. Donenfeld. All Rights Reverse Engineered.

Addendum

