
News and updates from the Project Zero team at Google

Project ZeroProject Zero

T u e s d a y , O c t o b e r 1 9 , 2 0 2 1

How a simple Linux kernel memory corruption bug can lead to
complete system compromise

Posted by Jann Horn, Project Zero

This blog post describes a straightforward Linux kernel locking bug and how I exploited it against Debian Buster's
4.19.0-13-amd64 kernel. Based on that, it explores options for security mitigations that could prevent or hinder
exploitation of issues similar to this one.

I hope that stepping through such an exploit and sharing this compiled knowledge with the wider security
community can help with reasoning about the relative utility of various mitigation approaches.

A lot of the individual exploitation techniques and mitigation options that I am describing here aren't novel.
However, I believe that there is value in writing them up together to show how various mitigations interact with a
fairly normal use-after-free exploit.

Our bugtracker entry for this bug, along with the proof of concept, is at https://bugs.chromium.org/p/project-
zero/issues/detail?id=2125.

Code snippets in this blog post that are relevant to the exploit are taken from the upstream 4.19.160 release, since
that is what the targeted Debian kernel is based on; some other code snippets are from mainline Linux.

(In case you're wondering why the bug and the targeted Debian kernel are from end of last year: I already wrote
most of this blogpost around April, but only recently �nished it)

I would like to thank Ryan Hileman for a discussion we had a while back about how static analysis might �t into
static prevention of security bugs (but note that Ryan hasn't reviewed this post and doesn't necessarily agree with
any of my opinions). I also want to thank Kees Cook for providing feedback on an earlier version of this post (again,
without implying that he necessarily agrees with everything), and my Project Zero colleagues for reviewing this
post and frequent discussions about exploit mitigations.

On Linux, terminal devices (such as a serial console or a virtual console) are represented by a struct
tty_struct. Among other things, this structure contains �elds used for the job control features of terminals,
which are usually modi�ed using a set of ioctls:

struct tty_struct {
[...]

 spinlock_t ctrl_lock;
[...]
 struct pid *pgrp; /* Protected by ctrl lock */
 struct pid *session;

[...]
 struct tty_struct *link;
[...]
}[...];

The pgrp �eld points to the foreground process group of the terminal (normally modi�ed from userspace via the
TIOCSPGRP ioctl); the session �eld points to the session associated with the terminal. Both of these �elds do not
point directly to a process/task, but rather to a struct pid. struct pid ties a speci�c incarnation of a numeric
ID to a set of processes that use that ID as their PID (also known in userspace as TID), TGID (also known in
userspace as PID), PGID, or SID. You can kind of think of it as a weak reference to a process, although that's not
entirely accurate. (There's some extra nuance around struct pid when execve() is called by a non-leader
thread, but that's irrelevant here.)

All processes that are running inside a terminal and are subject to its job control refer to that terminal as their
"controlling terminal" (stored in ->signal->tty of the process).

A special type of terminal device are pseudoterminals, which are used when you, for example, open a terminal
application in a graphical environment or connect to a remote machine via SSH. While other terminal devices are
connected to some sort of hardware, both ends of a pseudoterminal are controlled by userspace, and
pseudoterminals can be freely created by (unprivileged) userspace. Every time /dev/ptmx (short for
"pseudoterminal multiplexor") is opened, the resulting �le descriptor represents the device side (referred to in
documentation and kernel sources as "the pseudoterminal master") of a new pseudoterminal . You can read from
it to get the data that should be printed on the emulated screen, and write to it to emulate keyboard inputs. The

An analysis of current and potential kernel security mitigations

Introduction

Background for the bug

Search

Search This Blog

About Project Zero

Working at Project Zero

0day "In the Wild"

0day Exploit Root Cause Analyses

Vulnerability Disclosure FAQ

Pages

2021
A deep dive into an NSO zero-click
iMessage exploi... (Dec)

This shouldn't have happened: A
vulnerability post... (Dec)

Windows Exploitation Tricks: Relaying
DCOM Authent... (Oct)

Using Kerberos for Authentication Relay
Attacks (Oct)

How a simple Linux kernel memory
corruption bug ca... (Oct)

Fuzzing Closed-Source JavaScript Engines
with Cove... (Sep)

Understanding Network Access in
Windows AppContainers (Aug)

An EPYC escape: Case-study of a KVM
breakout (Jun)

Fuzzing iOS code on macOS at native
speed (May)

Designing sockfuzzer, a network syscall
fuzzer for... (Apr)

Policy and Disclosure: 2021 Edition (Apr)

Who Contains the Containers? (Apr)

In-the-Wild Series: October 2020 0-day
discovery (Mar)

Déjà vu-lnerability (Feb)

A Look at iMessage in iOS 14 (Jan)

Windows Exploitation Tricks: Trapping
Virtual Memo... (Jan)

The State of State Machines (Jan)

Hunting for Bugs in Windows Mini-Filter
Drivers (Jan)

In-the-Wild Series: Android Post-
Exploitation (Jan)

In-the-Wild Series: Windows Exploits (Jan)

In-the-Wild Series: Android Exploits (Jan)

In-the-Wild Series: Chrome In�nity Bug
(Jan)

In-the-Wild Series: Chrome Exploits (Jan)

Introducing the In-the-Wild Series (Jan)

2020
An iOS hacker tries Android (Dec)

An iOS zero-click radio proximity exploit
odyssey (Dec)

Oops, I missed it again! (Nov)

Enter the Vault: Authentication Issues in
HashiCor... (Oct)

Announcing the Fuzzilli Research Grant
Program (Oct)

Attacking the Qualcomm Adreno GPU
(Sep)

JITSploitation I: A JIT Bug (Sep)

Archives

More

https://googleprojectzero.blogspot.com/
https://bugs.chromium.org/p/project-zero/issues/detail?id=2125
https://twitter.com/lunixbochs
https://twitter.com/kees_cook
https://en.wikipedia.org/wiki/Virtual_console
https://www.gnu.org/software/libc/manual/html_node/Job-Control.html
https://man7.org/linux/man-pages/man4/tty_ioctl.4.html
https://man7.org/linux/man-pages/man7/pty.7.html
https://man7.org/linux/man-pages/man4/pts.4.html
https://man7.org/linux/man-pages/man7/pty.7.html
https://googleprojectzero.blogspot.com/p/about-project-zero.html
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.github.io/0days-in-the-wild/rca.html
https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-faq.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2021/12/this-shouldnt-have-happened.html
https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://googleprojectzero.blogspot.com/2021/10/using-kerberos-for-authentication-relay.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/09/fuzzing-closed-source-javascript.html
https://googleprojectzero.blogspot.com/2021/08/understanding-network-access-windows-app.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://googleprojectzero.blogspot.com/2021/05/fuzzing-ios-code-on-macos-at-native.html
https://googleprojectzero.blogspot.com/2021/04/designing-sockfuzzer-network-syscall.html
https://googleprojectzero.blogspot.com/2021/04/policy-and-disclosure-2021-edition.html
https://googleprojectzero.blogspot.com/2021/04/who-contains-containers.html
https://googleprojectzero.blogspot.com/2021/03/in-wild-series-october-2020-0-day.html
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/the-state-of-state-machines.html
https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-exploits.html
https://googleprojectzero.blogspot.com/2021/01/introducing-in-wild-series.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/11/oops-i-missed-it-again.html
https://googleprojectzero.blogspot.com/2020/10/enter-the-vault-auth-issues-hashicorp-vault.html
https://googleprojectzero.blogspot.com/2020/10/announcing-fuzzilli-research-grant.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://www.blogger.com/

corresponding terminal device (to which you'd usually connect a shell) is automatically created by the kernel under
/dev/pts/<number>.

One thing that makes pseudoterminals particularly strange is that both ends of the pseudoterminal have their own
struct tty_struct, which point to each other using the link member, even though the device side of the
pseudoterminal does not have terminal features like job control - so many of its members are unused.

Many of the ioctls for terminal management can be used on both ends of the pseudoterminal; but no matter on
which end you call them, they a�ect the same state, sometimes with minor di�erences in behavior. For example, in
the ioctl handler for TIOCGPGRP:

/**
 * tiocgpgrp - get process group

 * @tty: tty passed by user
 * @real_tty: tty side of the tty passed by the user if a pty else the tty
 * @p: returned pid

 *
 * Obtain the process group of the tty. If there is no process group
 * return an error.
 *

 * Locking: none. Reference to current->signal->tty is safe.
 */
static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
{

 struct pid *pid;
 int ret;
 /*
 * (tty == real_tty) is a cheap way of

 * testing if the tty is NOT a master pty.
 */
 if (tty == real_tty && current->signal->tty != real_tty)

 return -ENOTTY;
 pid = tty_get_pgrp(real_tty);
 ret = put_user(pid_vnr(pid), p);
 put_pid(pid);

 return ret;
}

As documented in the comment above, these handlers receive a pointer real_tty that points to the normal
terminal device; an additional pointer tty is passed in that can be used to �gure out on which end of the terminal
the ioctl was originally called. As this example illustrates, the tty pointer is normally only used for things like
pointer comparisons. In this case, it is used to prevent TIOCGPGRP from working when called on the terminal side
by a process which does not have this terminal as its controlling terminal.

Note: If you want to know more about how terminals and job control are intended to work, the book "The Linux
Programming Interface" provides a nice introduction to how these older parts of the userspace API are supposed
to work. It doesn't describe any of the kernel internals though, since it's written as a reference for userspace
programming. And it's from 2010, so it doesn't have anything in it about new APIs that have showed up over the
last decade.

The bug was in the ioctl handler tiocspgrp:

/**
 * tiocspgrp - attempt to set process group
 * @tty: tty passed by user

 * @real_tty: tty side device matching tty passed by user
 * @p: pid pointer
 *

 * Set the process group of the tty to the session passed. Only
 * permitted where the tty session is our session.
 *
 * Locking: RCU, ctrl lock

 */
static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
{
 struct pid *pgrp;

 pid_t pgrp_nr;
[...]
 if (get_user(pgrp_nr, p))
 return -EFAULT;

[...]
 pgrp = find_vpid(pgrp_nr);
[...]

 spin_lock_irq(&tty->ctrl_lock);
 put_pid(real_tty->pgrp);
 real_tty->pgrp = get_pid(pgrp);
 spin_unlock_irq(&tty->ctrl_lock);

[...]
}

The pgrp member of the terminal side (real_tty) is being modi�ed, and the reference counts of the old and new
process group are adjusted accordingly using put_pid and get_pid; but the lock is taken on tty, which can be
either end of the pseudoterminal pair, depending on which �le descriptor we pass to ioctl(). So by
simultaneously calling the TIOCSPGRP ioctl on both sides of the pseudoterminal, we can cause data races between
concurrent accesses to the pgrp member. This can cause reference counts to become skewed through the
following races:

The bug

JITSploitation II: Getting Read/Write (Sep)

JITSploitation III: Subverting Control Flow
(Sep)

MMS Exploit Part 5: Defeating Android
ASLR, Gettin... (Aug)

Exploiting Android Messengers with
WebRTC: Part 3 (Aug)

Exploiting Android Messengers with
WebRTC: Part 2 (Aug)

MMS Exploit Part 4: MMS Primer,
Completing the ASL... (Aug)

Exploiting Android Messengers with
WebRTC: Part 1 (Aug)

The core of Apple is PPL: Breaking the
XNU kernel'... (Jul)

One Byte to rule them all (Jul)

Root Cause Analyses for 0-day In-the-Wild
Exploits (Jul)

Detection De�cit: A Year in Review of 0-
days Used... (Jul)

MMS Exploit Part 3: Constructing the
Memory Corrup... (Jul)

MMS Exploit Part 2: E�ective Fuzzing of
the Qmage... (Jul)

MMS Exploit Part 1: Introduction to the
Samsung Qm... (Jul)

How to unc0ver a 0-day in 4 hours or less
(Jul)

FF Sandbox Escape (CVE-2020-12388)
(Jun)

A survey of recent iOS kernel exploits
(Jun)

Fuzzing ImageIO (Apr)

You Won't Believe what this One
Line Change Did to... (Apr)

TFW you-get-really-excited-you-patch-
di�ed-a-0day... (Apr)

Escaping the Chrome Sandbox with RIDL
(Feb)

Mitigations are attack surface, too (Feb)

A day^W^W Several months in the life of
Project Ze... (Feb)

A day^W^W Several months in the life of
Project Ze... (Feb)

Part II: Returning to Adobe Reader
symbols on macOS (Jan)

Remote iPhone Exploitation Part 3: From
Memory Cor... (Jan)

Remote iPhone Exploitation Part 2:
Bringing Light ... (Jan)

Remote iPhone Exploitation Part 1:
Poking Memory v... (Jan)

Policy and Disclosure: 2020 Edition (Jan)

2019
Calling Local Windows RPC Servers from
.NET (Dec)

SockPuppet: A Walkthrough of a Kernel
Exploit for ... (Dec)

Bad Binder: Android In-The-Wild Exploit
(Nov)

KTRW: The journey to build a debuggable
iPhone (Oct)

The story of Adobe Reader symbols (Oct)

Windows Exploitation Tricks: Spoo�ng
 Name... (Sep)

A very deep dive into iOS Exploit chains
found in ... (Aug)

In-the-wild iOS Exploit Chain 1 (Aug)

In-the-wild iOS Exploit Chain 2 (Aug)

In-the-wild iOS Exploit Chain 3 (Aug)

In-the-wild iOS Exploit Chain 4 (Aug)

In-the-wild iOS Exploit Chain 5 (Aug)

Implant Teardown (Aug)

JSC Exploits (Aug)

The Many Possibilities of CVE-2019-8646
(Aug)

Down the Rabbit-Hole... (Aug)

The Fully Remote Attack Surface of the
iPhone (Aug)

https://man7.org/tlpi/
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://googleprojectzero.blogspot.com/2020/08/mms-exploit-part-5-defeating-aslr-getting-rce.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-3.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-2.html
https://googleprojectzero.blogspot.com/2020/08/mms-exploit-part-4-completing-aslr-oracle.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-1.html
https://googleprojectzero.blogspot.com/2020/07/the-core-of-apple-is-ppl-breaking-xnu.html
https://googleprojectzero.blogspot.com/2020/07/one-byte-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2020/07/root-cause-analyses-for-0-day-in-wild.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-3-constructing-primitives.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/how-to-unc0ver-0-day-in-4-hours-or-less.html
https://googleprojectzero.blogspot.com/2020/06/ff-sandbox-escape-cve-2020-12388.html
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
https://googleprojectzero.blogspot.com/2020/04/you-wont-believe-what-this-one-line.html
https://googleprojectzero.blogspot.com/2020/04/tfw-you-get-really-excited-you-patch.html
https://googleprojectzero.blogspot.com/2020/02/escaping-chrome-sandbox-with-ridl.html
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part2.html
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part1.html
https://googleprojectzero.blogspot.com/2020/01/part-ii-returning-to-adobe-reader.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/policy-and-disclosure-2020-edition.html
https://googleprojectzero.blogspot.com/2019/12/calling-local-windows-rpc-servers-from.html
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/10/ktrw-journey-to-build-debuggable-iphone.html
https://googleprojectzero.blogspot.com/2019/10/the-story-of-adobe-reader-symbols.html
https://googleprojectzero.blogspot.com/2019/09/windows-exploitation-tricks-spoofing.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-2.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-3.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-5.html
https://googleprojectzero.blogspot.com/2019/08/implant-teardown.html
https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2019/08/down-rabbit-hole.html
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html

 ioctl(fd1, TIOCSPGRP, pid_A) ioctl(fd2, TIOCSPGRP, pid_B)
 spin_lock_irq(...) spin_lock_irq(...)

 put_pid(old_pid)
 put_pid(old_pid)
 real_tty->pgrp = get_pid(A)
 real_tty->pgrp = get_pid(B)

 spin_unlock_irq(...) spin_unlock_irq(...)

 ioctl(fd1, TIOCSPGRP, pid_A) ioctl(fd2, TIOCSPGRP, pid_B)
 spin_lock_irq(...) spin_lock_irq(...)

 put_pid(old_pid)
 put_pid(old_pid)
 real_tty->pgrp = get_pid(B)
 real_tty->pgrp = get_pid(A)

 spin_unlock_irq(...) spin_unlock_irq(...)

In both cases, the refcount of the old struct pid is decremented by 1 too much, and either A's or B's is
incremented by 1 too much.

Once you understand the issue, the �x seems relatively obvious:

 if (session_of_pgrp(pgrp) != task_session(current))
 goto out_unlock;
 retval = 0;

- spin_lock_irq(&tty->ctrl_lock);
+ spin_lock_irq(&real_tty->ctrl_lock);
 put_pid(real_tty->pgrp);
 real_tty->pgrp = get_pid(pgrp);

- spin_unlock_irq(&tty->ctrl_lock);
+ spin_unlock_irq(&real_tty->ctrl_lock);
 out_unlock:

 rcu_read_unlock();
 return retval;

In this section, I will �rst walk through how my exploit works; afterwards I will discuss di�erent defensive
techniques that target these attack stages.

This bug allows us to probabilistically skew the refcount of a struct pid down, depending on which way the race
happens: We can run colliding TIOCSPGRP calls from two threads repeatedly, and from time to time that will mess
up the refcount. But we don't immediately know how many times the refcount skew has actually happened.

What we'd really want as an attacker is a way to skew the refcount deterministically. We'll have to somehow
compensate for our lack of information about whether the refcount was skewed successfully. We could try to
somehow make the race deterministic (seems di�cult), or after each attempt to skew the refcount assume that
the race worked and run the rest of the exploit (since if we didn't skew the refcount, the initial memory corruption
is gone, and nothing bad will happen), or we can attempt to �nd an information leak that lets us �gure out the
state of the reference count.

On typical desktop/server distributions, the following approach works (unreliably, depending on RAM size) for
setting up a freed struct pid with multiple dangling references:

1. Allocate a new struct pid (by creating a new task).

2. Create a large number of references to it (by sending messages with SCM_CREDENTIALS to unix domain
sockets, and leaving those messages queued up).

3. Repeatedly trigger the TIOCSPGRP race to skew the reference count downwards, with the number of
attempts chosen such that we expect that the resulting refcount skew is bigger than the number of
references we need for the rest of our attack, but smaller than the number of extra references we created.

4. Let the task owning the pid exit and die, and wait for RCU (read-copy-update, a mechanism that involves
delaying the freeing of some objects) to settle such that the task's reference to the pid is gone. (Waiting for
an RCU grace period from userspace is not a primitive that is intentionally exposed through the UAPI, but
there are various ways userspace can do it - e.g. by testing when a released BPF program's memory is
subtracted from memory accounting, or by abusing the membarrier(MEMBARRIER_CMD_GLOBAL, ...)
syscall after the kernel version where RCU �avors were uni�ed.)

5. Create a new thread, and let that thread attempt to drop all the references we created.

Because the refcount is smaller at the start of step 5 than the number of references we are about to drop, the pid
will be freed at some point during step 5; the next attempt to drop a reference will cause a use-after-free:

struct upid {

 int nr;
 struct pid_namespace *ns;
};

struct pid
{
 atomic_t count;

 unsigned int level;
 /* lists of tasks that use this pid */
 struct hlist_head tasks[PIDTYPE_MAX];
 struct rcu_head rcu;

Attack stages

Attack stage: Freeing the object with multiple dangling references

Trashing the Flow of Data (May)

Windows Exploitation Tricks: Abusing the
User-Mode... (Apr)

Virtually Unlimited Memory: Escaping the
Chrome Sa... (Apr)

Splitting atoms in XNU (Apr)

Windows Kernel Logic Bug Class: Access
Mode Mismat... (Mar)

Android Messaging: A Few Bugs Short of
a Chain (Mar)

The Curious Case of Convexity Confusion
(Feb)

Examining Pointer Authentication on the
iPhone XS (Feb)

voucher_swap: Exploiting MIG reference
counting in... (Jan)

Taking a page from the kernel's
book: A TLB issue ... (Jan)

2018
On VBScript (Dec)

Searching statically-linked vulnerable
library fun... (Dec)

Adventures in Video Conferencing Part 5:
Where Do ... (Dec)

Adventures in Video Conferencing Part 4:
What Didn... (Dec)

Adventures in Video Conferencing Part 3:
The Even ... (Dec)

Adventures in Video Conferencing Part 2:
Fun with ... (Dec)

Adventures in Video Conferencing Part 1:
The Wild ... (Dec)

Injecting Code into Windows Protected
Processes us... (Nov)

Heap Feng Shader: Exploiting
SwiftShader in Chrome (Oct)

Deja-XNU (Oct)

Injecting Code into Windows Protected
Processes us... (Oct)

365 Days Later: Finding and Exploiting
Safari Bugs... (Oct)

A cache invalidation bug in Linux memory
management (Sep)

OATmeal on the Universal Cereal Bus:
Exploiting An... (Sep)

The Problems and Promise of
WebAssembly (Aug)

Windows Exploitation Tricks: Exploiting
Arbitrary ... (Aug)

Adventures in vulnerability reporting
(Aug)

Drawing Outside the Box: Precision
Issues in Graph... (Jul)

Detecting Kernel Memory Disclosure –
Whitepaper (Jun)

Bypassing Mitigations by Attacking JIT
Server in M... (May)

Windows Exploitation Tricks: Exploiting
Arbitrary ... (Apr)

Reading privileged memory with a side-
channel (Jan)

2017
aPAColypse now: Exploiting Windows 10
in a Local N... (Dec)

Over The Air - Vol. 2, Pt. 3: Exploiting The
Wi-Fi... (Oct)

Using Binary Di�ng to Discover Windows
Kernel Me... (Oct)

Over The Air - Vol. 2, Pt. 2: Exploiting The
Wi-Fi... (Oct)

Over The Air - Vol. 2, Pt. 1: Exploiting The
Wi-Fi... (Sep)

The Great DOM Fuzz-o� of 2017 (Sep)

Bypassing VirtualBox Process Hardening
on Windows (Aug)

Windows Exploitation Tricks: Arbitrary
Directory C... (Aug)

Trust Issues: Exploiting TrustZone TEEs
(Jul)

https://git.kernel.org/linus/54ffccbf053b
https://googleprojectzero.blogspot.com/2019/05/trashing-flow-of-data.html
https://googleprojectzero.blogspot.com/2019/04/windows-exploitation-tricks-abusing.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html
https://googleprojectzero.blogspot.com/2019/03/windows-kernel-logic-bug-class-access.html
https://googleprojectzero.blogspot.com/2019/03/android-messaging-few-bugs-short-of.html
https://googleprojectzero.blogspot.com/2019/02/the-curious-case-of-convexity-confusion.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/01/voucherswap-exploiting-mig-reference.html
https://googleprojectzero.blogspot.com/2019/01/taking-page-from-kernels-book-tlb-issue.html
https://googleprojectzero.blogspot.com/2018/12/on-vbscript.html
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-5.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-4.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-2.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/10/heap-feng-shader-exploiting-swiftshader.html
https://googleprojectzero.blogspot.com/2018/10/deja-xnu.html
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/10/365-days-later-finding-and-exploiting.html
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://googleprojectzero.blogspot.com/2018/09/oatmeal-on-universal-cereal-bus.html
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html
https://googleprojectzero.blogspot.com/2018/08/adventures-in-vulnerability-reporting.html
https://googleprojectzero.blogspot.com/2018/07/drawing-outside-box-precision-issues-in.html
https://googleprojectzero.blogspot.com/2018/06/detecting-kernel-memory-disclosure.html
https://googleprojectzero.blogspot.com/2018/05/bypassing-mitigations-by-attacking-jit.html
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-10-in_18.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/using-binary-diffing-to-discover.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html
https://googleprojectzero.blogspot.com/2017/08/windows-exploitation-tricks-arbitrary.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html

 struct upid numbers[1];
};

[...]
void put_pid(struct pid *pid)
{
 struct pid_namespace *ns;

 if (!pid)
 return;

 ns = pid->numbers[pid->level].ns;
 if ((atomic_read(&pid->count) == 1) ||
 atomic_dec_and_test(&pid->count)) {
 kmem_cache_free(ns->pid_cachep, pid);

 put_pid_ns(ns);
 }
}

When the object is freed, the SLUB allocator normally replaces the �rst 8 bytes (sidenote: a di�erent position is
chosen starting in 5.7, see Kees' blog) of the freed object with an XOR-obfuscated freelist pointer; therefore, the
count and level �elds are now e�ectively random garbage. This means that the load from pid->numbers[pid-
>level] will now be at some random o�set from the pid, in the range from zero to 64 GiB. As long as the
machine doesn't have tons of RAM, this will likely cause a kernel segmentation fault. (Yes, I know, that's an
absolutely gross and unreliable way to exploit this. It mostly works though, and I only noticed this issue when I
already had the whole thing written, so I didn't really want to go back and change it... plus, did I mention that it
mostly works?)

Linux in its default con�guration, and the con�guration shipped by most general-purpose distributions, attempts
to �x up unexpected kernel page faults and other types of "oopses" by killing only the crashing thread. Therefore,
this kernel page fault is actually useful for us as a signal: Once the thread has died, we know that the object has
been freed, and can continue with the rest of the exploit.

If this code looked a bit di�erently and we were actually reaching a double-free, the SLUB allocator would also
detect that and trigger a kernel oops (see set_freepointer() for the CONFIG_SLAB_FREELIST_HARDENED
case).

On the Debian kernel I was looking at, a struct pid in the initial namespace is allocated from the same
kmem_cache as struct seq_file and struct epitem - these three slabs have been merged into one by
find_mergeable() to reduce memory fragmentation, since their object sizes, alignment requirements, and �ags
match:

root@deb10:/sys/kernel/slab# ls -l pid
lrwxrwxrwx 1 root root 0 Feb 6 00:09 pid -> :A-0000128

root@deb10:/sys/kernel/slab# ls -l | grep :A-0000128
drwxr-xr-x 2 root root 0 Feb 6 00:09 :A-0000128
lrwxrwxrwx 1 root root 0 Feb 6 00:09 eventpoll_epi -> :A-0000128
lrwxrwxrwx 1 root root 0 Feb 6 00:09 pid -> :A-0000128

lrwxrwxrwx 1 root root 0 Feb 6 00:09 seq_file -> :A-0000128
root@deb10:/sys/kernel/slab#

A straightforward way to exploit a dangling reference to a SLUB object is to reallocate the object through the same
kmem_cache it came from, without ever letting the page reach the page allocator. To �gure out whether it's easy to
exploit this bug this way, I made a table listing which �elds appear at each o�set in these three data structures
(using pahole -E --hex -C <typename> <path to vmlinux debug info>):

o�set pid eventpoll_epi / epitem (RCU-freed) seq_�le

0x00 count.counter (4) (CONTROL) rbn.__rb_parent_color (8) (TARGET?) buf (8) (TARGET?)

0x04 level (4)

0x08 tasks[PIDTYPE_PID] (8) rbn.rb_right (8) / rcu.func (8) size (8)

0x10 tasks[PIDTYPE_TGID] (8) rbn.rb_left (8) from (8)

0x18 tasks[PIDTYPE_PGID] (8) rdllink.next (8) count (8)

0x20 tasks[PIDTYPE_SID] (8) rdllink.prev (8) pad_until (8)

0x28 rcu.next (8) next (8) index (8)

0x30 rcu.func (8) �d.�le (8) read_pos (8)

0x38 numbers[0].nr (4) �d.fd (4) version (8)

0x3c [hole] (4) nwait (4)

0x40 numbers[0].ns (8) pwqlist.next (8) lock (0x20): counter (8)

0x48 --- pwqlist.prev (8)

0x50 --- ep (8)

0x58 --- �link.next (8)

0x60 --- �link.prev (8) op (8)

0x68 --- ws (8) poll_event (4)

0x6c --- [hole] (4)

0x70 --- event.events (4) �le (8)

0x74 --- event.data (8) (CONTROL)

0x78 --- private (8) (TARGET?)

0x7c --- ---

0x80 --- --- ---

Discarded attack idea: Directly exploiting the UAF at the SLUB level

Exploiting the Linux kernel via packet
sockets (May)

Exploiting .NET Managed DCOM (Apr)

Exception-oriented exploitation on iOS
(Apr)

Over The Air: Exploiting Broadcom’s Wi-Fi
Stack (P... (Apr)

Notes on Windows Uniscribe Fuzzing
(Apr)

Pandavirtualization: Exploiting the Xen
hypervisor (Apr)

Over The Air: Exploiting Broadcom’s Wi-Fi
Stack (P... (Apr)

Project Zero Prize Conclusion (Mar)

Attacking the Windows NVIDIA Driver
(Feb)

Lifting the (Hyper) Visor: Bypassing
Samsung’s Rea... (Feb)

2016
Chrome OS exploit: one byte over�ow
and symlinks (Dec)

BitUnmap: Attacking Android Ashmem
(Dec)

Breaking the Chain (Nov)

task_t considered harmful (Oct)

Announcing the Project Zero Prize (Sep)

Return to libstagefright: exploiting libutils
on A... (Sep)

A Shadow of our Former Self (Aug)

A year of Windows kernel font fuzzing #2:
the tech... (Jul)

How to Compromise the Enterprise
Endpoint (Jun)

A year of Windows kernel font fuzzing #1:
the results (Jun)

Exploiting Recursion in the Linux Kernel
(Jun)

Life After the Isolated Heap (Mar)

Race you to the kernel! (Mar)

Exploiting a Leaked Thread Handle (Mar)

The De�nitive Guide on Win32 to NT Path
Conversion (Feb)

Racing MIDI messages in Chrome (Feb)

Raising the Dead (Jan)

2015
FireEye Exploitation: Project Zero’s
Vulnerability... (Dec)

Between a Rock and a Hard Link (Dec)

Windows Sandbox Attack Surface
Analysis (Nov)

Hack The Galaxy: Hunting Bugs in the
Samsung Galax... (Nov)

Windows Drivers are True’ly Tricky (Oct)

Revisiting Apple IPC: (1) Distributed
Objects (Sep)

Kaspersky: Mo Unpackers, Mo Problems.
(Sep)

Stagefrightened? (Sep)

Enabling QR codes in Internet Explorer,
or a story... (Sep)

Windows 10^H^H Symbolic Link
Mitigations (Aug)

One font vulnerability to rule them all #4:
Window... (Aug)

Three bypasses and a �x for one of
Flash's Vector... (Aug)

Attacking ECMAScript Engines with
Rede�nition (Aug)

One font vulnerability to rule them all #3:
Window... (Aug)

One font vulnerability to rule them all #2:
Adobe ... (Aug)

One font vulnerability to rule them all #1:
Introd... (Jul)

One Perfect Bug: Exploiting Type
Confusion in Flash (Jul)

Signi�cant Flash exploit mitigations are
live in ... (Jul)

https://outflux.net/blog/archives/2020/09/21/security-things-in-linux-v5-7/#v5.7-slub
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/04/exploiting-net-managed-dcom.html
https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/notes-on-windows-uniscribe-fuzzing.html
https://googleprojectzero.blogspot.com/2017/04/pandavirtualization-exploiting-xen.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/03/project-zero-prize-conclusion.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/bitunmap-attacking-android-ashmem.html
https://googleprojectzero.blogspot.com/2016/11/breaking-chain.html
https://googleprojectzero.blogspot.com/2016/10/taskt-considered-harmful.html
https://googleprojectzero.blogspot.com/2016/09/announcing-project-zero-prize.html
https://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html
https://googleprojectzero.blogspot.com/2016/08/a-shadow-of-our-former-self.html
https://googleprojectzero.blogspot.com/2016/07/a-year-of-windows-kernel-font-fuzzing-2.html
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://googleprojectzero.blogspot.com/2016/06/a-year-of-windows-kernel-font-fuzzing-1_27.html
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://googleprojectzero.blogspot.com/2016/03/life-after-isolated-heap.html
https://googleprojectzero.blogspot.com/2016/03/race-you-to-kernel.html
https://googleprojectzero.blogspot.com/2016/03/exploiting-leaked-thread-handle.html
https://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
https://googleprojectzero.blogspot.com/2016/02/racing-midi-messages-in-chrome.html
https://googleprojectzero.blogspot.com/2016/01/raising-dead.html
https://googleprojectzero.blogspot.com/2015/12/fireeye-exploitation-project-zeros.html
https://googleprojectzero.blogspot.com/2015/12/between-rock-and-hard-link.html
https://googleprojectzero.blogspot.com/2015/11/windows-sandbox-attack-surface-analysis.html
https://googleprojectzero.blogspot.com/2015/11/hack-galaxy-hunting-bugs-in-samsung.html
https://googleprojectzero.blogspot.com/2015/10/windows-drivers-are-truely-tricky.html
https://googleprojectzero.blogspot.com/2015/09/revisiting-apple-ipc-1-distributed_28.html
https://googleprojectzero.blogspot.com/2015/09/kaspersky-mo-unpackers-mo-problems.html
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://googleprojectzero.blogspot.com/2015/09/enabling-qr-codes-in-internet-explorer.html
https://googleprojectzero.blogspot.com/2015/08/windows-10hh-symbolic-link-mitigations.html
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all_21.html
https://googleprojectzero.blogspot.com/2015/08/three-bypasses-and-fix-for-one-of.html
https://googleprojectzero.blogspot.com/2015/08/attacking-ecmascript-engines-with.html
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all_13.html
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2015/07/one-font-vulnerability-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2015/07/one-perfect-bug-exploiting-type_20.html
https://googleprojectzero.blogspot.com/2015/07/significant-flash-exploit-mitigations_16.html

In this case, reallocating the object as one of those three types didn't seem to me like a nice way forward (although
it should be possible to exploit this somehow with some e�ort, e.g. by using count.counter to corrupt the buf
�eld of seq_file). Also, some systems might be using the slab_nomerge kernel command line �ag, which
disables this merging behavior.

Another approach that I didn't look into here would have been to try to corrupt the obfuscated SLUB freelist
pointer (obfuscation is implemented in freelist_ptr()); but since that stores the pointer in big-endian,
count.counter would only e�ectively let us corrupt the more signi�cant half of the pointer, which would
probably be a pain to exploit.

This section will refer to some internals of the SLUB allocator; if you aren't familiar with those, you may want to at
least look at slides 2-4 and 13-14 of Christoph Lameter's slab allocator overview talk from 2014. (Note that that talk
covers three di�erent allocators; the SLUB allocator is what most systems use nowadays.)

The alternative to exploiting the UAF at the SLUB allocator level is to �ush the page out to the page allocator (also
called the buddy allocator), which is the last level of dynamic memory allocation on Linux (once the system is far
enough into the boot process that the memblock allocator is no longer used). From there, the page can
theoretically end up in pretty much any context. We can �ush the page out to the page allocator with the following
steps:

1. Instruct the kernel to pin our task to a single CPU. Both SLUB and the page allocator use per-cpu structures;
so if the kernel migrates us to a di�erent CPU in the middle, we would fail.

2. Before allocating the victim struct pid whose refcount will be corrupted, allocate a large number of
objects to drain partially-free slab pages of all their unallocated objects. If the victim object (which will be
allocated in step 5 below) landed in a page that is already partially used at this point, we wouldn't be able to
free that page.

3. Allocate around objs_per_slab * (1+cpu_partial) objects - in other words, a set of objects that
completely �ll at least cpu_partial pages, where cpu_partial is the maximum length of the "percpu
partial list". Those newly allocated pages that are completely �lled with objects are not referenced by SLUB's
freelists at this point because SLUB only tracks pages with free objects on its freelists.

4. Fill objs_per_slab-1 more objects, such that at the end of this step, the "CPU slab" (the page from which
allocations will be served �rst) will not contain anything other than free space and fresh allocations (created
in this step).

5. Allocate the victim object (a struct pid). The victim page (the page from which the victim object came) will
usually be the CPU slab from step 4, but if step 4 completely �lled the CPU slab, the victim page might also
be a new, freshly allocated CPU slab.

6. Trigger the bug on the victim object to create an uncounted reference, and free the object.
7. Allocate objs_per_slab+1 more objects. After this, the victim page will be completely �lled with allocations

from steps 4 and 7, and it won't be the CPU slab anymore (because the last allocation can not have �t into
the victim page).

8. Free all allocations from steps 4 and 7. This causes the victim page to become empty, but does not free the
page; the victim page is placed on the percpu partial list once a single object from that page has been freed,
and then stays on that list.

9. Free one object per page from the allocations from step 3. This adds all these pages to the percpu partial list
until it reaches the limit cpu_partial, at which point it will be �ushed: Pages containing some in-use
objects are placed on SLUB's per-NUMA-node partial list, and pages that are completely empty are freed
back to the page allocator. (We don't free all allocations from step 3 because we only want the victim page to
be freed to the page allocator.) Note that this step requires that every objs_per_slab-th object the
allocator gave us in step 3 is on a di�erent page.

When the page is given to the page allocator, we bene�t from the page being order-0 (4 KiB, native page size): For
order-0 pages, the page allocator has special freelists, one per CPU+zone+migratetype combination. Pages on
these freelists are not normally accessed from other CPUs, and they don't immediately get combined with adjacent
free pages to form higher-order free pages.

At this point we are able to perform use-after-free accesses to some o�set inside the free victim page, using
codepaths that interpret part of the victim page as a struct pid. Note that at this point, we still don't know
exactly at which o�set inside the victim page the victim object is located.

At the point where the victim page has reached the page allocator's freelist, it's essentially game over - at this
point, the page can be reused as anything in the system, giving us a broad range of options for exploitation. In my
opinion, most defences that act after we've reached this point are fairly unreliable.

One type of allocation that is directly served from the page allocator and has nice properties for exploitation are
page tables (which have also been used to exploit Rowhammer). One way to abuse the ability to modify a page
table would be to enable the read/write bit in a page table entry (PTE) that maps a �le page to which we are only
supposed to have read access - for example, this could be used to gain write access to part of a setuid binary's
.text segment and overwrite it with malicious code.

We don't know at which o�set inside the victim page the victim object is located; but since a page table is
e�ectively an array of 8-byte-aligned elements of size 8 and the victim object's alignment is a multiple of that, as
long as we spray all elements of the victim array, we don't need to know the victim object's o�set.

To allocate a page table full of PTEs mapping the same �le page, we have to:

prepare by setting up a 2MiB-aligned memory region (because each last-level page table describes 2MiB
of virtual memory) containing single-page mmap() mappings of the same �le page (meaning each
mapping corresponds to one PTE); then

trigger allocation of the page table and �ll it with PTEs by reading from each mapping

Attack stage: Freeing the object's page to the page allocator

Attack stage: Reallocating the victim page as a pagetable

From inter to intra: gaining reliability (Jul)

When ‘int’ is the new ‘short’ (Jul)

What is a "good" memory
corruption vulnerability? (Jun)

Analysis and Exploitation of an ESET
Vulnerability (Jun)

Owning Internet Printing - A Case Study
in Modern ... (Jun)

Dude, where’s my heap? (Jun)

In-Console-Able (May)

A Tale of Two Exploits (Apr)

Taming the wild copy: Parallel Thread
Corruption (Mar)

Exploiting the DRAM rowhammer bug to
gain kernel p... (Mar)

Feedback and data-driven updates to
Google’s discl... (Feb)

(^Exploiting)\s*(CVE-2015-0318)\s*(in)\s*
(Flash$) (Feb)

A Token’s Tale (Feb)

Exploiting NVMAP to escape the Chrome
sandbox - CV... (Jan)

Finding and exploiting ntpd
vulnerabilities (Jan)

2014
Internet Explorer EPM Sandbox Escape
CVE-2014-6350 (Dec)

pwn4fun Spring 2014 - Safari - Part II
(Nov)

Project Zero Patch Tuesday roundup,
November 2014 (Nov)

Did the “Man With No Name” Feel
Insecure? (Oct)

More Mac OS X and iPhone sandbox
escapes and kerne... (Oct)

Exploiting CVE-2014-0556 in Flash (Sep)

The poisoned NUL byte, 2014 edition
(Aug)

What does a pointer look like, anyway?
(Aug)

Mac OS X and iPhone sandbox escapes
(Jul)

pwn4fun Spring 2014 - Safari - Part I (Jul)

Announcing Project Zero (Jul)

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://man7.org/linux/man-pages/man7/numa.7.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/07/from-inter-to-intra-gaining-reliability_10.html
https://googleprojectzero.blogspot.com/2015/07/when-int-is-new-short.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-of-eset.html
https://googleprojectzero.blogspot.com/2015/06/owning-internet-printing-case-study-in.html
https://googleprojectzero.blogspot.com/2015/06/dude-wheres-my-heap.html
https://googleprojectzero.blogspot.com/2015/05/in-console-able.html
https://googleprojectzero.blogspot.com/2015/04/a-tale-of-two-exploits.html
https://googleprojectzero.blogspot.com/2015/03/taming-wild-copy-parallel-thread.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/02/feedback-and-data-driven-updates-to.html
https://googleprojectzero.blogspot.com/2015/02/exploitingscve-2015-0318sinsflash.html
https://googleprojectzero.blogspot.com/2015/02/a-tokens-tale_9.html
https://googleprojectzero.blogspot.com/2015/01/exploiting-nvmap-to-escape-chrome.html
https://googleprojectzero.blogspot.com/2015/01/finding-and-exploiting-ntpd.html
https://googleprojectzero.blogspot.com/2014/12/internet-explorer-epm-sandbox-escape.html
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://googleprojectzero.blogspot.com/2014/11/project-zero-patch-tuesday-roundup.html
https://googleprojectzero.blogspot.com/2014/10/did-man-with-no-name-feel-insecure.html
https://googleprojectzero.blogspot.com/2014/10/more-mac-os-x-and-iphone-sandbox.html
https://googleprojectzero.blogspot.com/2014/09/exploiting-cve-2014-0556-in-flash.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/what-does-pointer-look-like-anyway.html
https://googleprojectzero.blogspot.com/2014/07/mac-os-x-and-iphone-sandbox-escapes.html
https://googleprojectzero.blogspot.com/2014/07/pwn4fun-spring-2014-safari-part-i_24.html
https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html

struct pid has the same alignment as a PTE, and it starts with a 32-bit refcount, so that refcount is guaranteed
to overlap the �rst half of a PTE, which is 64-bit. Because X86 CPUs are little-endian, incrementing the refcount �eld
in the freed struct pid increments the least signi�cant half of the PTE - so it e�ectively increments the PTE.
(Except for the edge case where the least signi�cant half is 0xffffffff, but that's not the case here.)

struct pid: count | level | tasks[0] | tasks[1] | tasks[2] | ...
pagetable: PTE | PTE | PTE | PTE | ...

Therefore we can increment one of the PTEs by repeatedly triggering get_pid(), which tries to increment the
refcount of the freed object. This can be turned into the ability to write to the �le page as follows:

Increment the PTE by 0x42 to set the Read/Write bit and the Dirty bit. (If we didn't set the Dirty bit, the
CPU would do it by itself when we write to the corresponding virtual address, so we could also just
increment by 0x2 here.)
For each mapping, attempt to overwrite its contents with malicious data and ignore page faults.

This might throw spurious errors because of outdated TLB entries, but taking a page fault will
automatically evict such TLB entries, so if we just attempt the write twice, this can't happen
on the second write (modulo CPU migration, as mentioned above).

One easy way to ignore page faults is to let the kernel perform the memory write using
pread(), which will return -EFAULT on fault.

If the kernel notices the Dirty bit later on, that might trigger writeback, which could crash the kernel if the mapping
isn't set up for writing. Therefore, we have to reset the Dirty bit. We can't reliably decrement the PTE because
put_pid() ine�ciently accesses pid->numbers[pid->level] even when the refcount isn't dropping to zero,
but we can increment it by an additional 0x80-0x42=0x3e, which means the �nal value of the PTE, compared to the
initial value, will just have the additional bit 0x80 set, which the kernel ignores.

Afterwards, we launch the setuid executable (which, in the version in the pagecache, now contains the code we
injected), and gain root privileges:

Note that nothing in this whole exploit requires us to leak any kernel-virtual or physical addresses, partly because
we have an increment primitive instead of a plain write; and it also doesn't involve directly in�uencing the
instruction pointer.

This section describes di�erent ways in which this exploit could perhaps have been prevented from working. To
assist the reader, the titles of some of the subsections refer back to speci�c exploit stages from the section above.

A potential �rst line of defense against many kernel security issues is to only make kernel subsystems available to
code that needs access to them. If an attacker does not have direct access to a vulnerable subsystem and doesn't
have su�cient in�uence over a system component with access to make it trigger the issue, the issue is e�ectively
unexploitable from the attacker's security context.

Pseudoterminals are (more or less) only necessary for interactively serving users who have shell access (or
something resembling that), including:

terminal emulators inside graphical user sessions

SSH servers

screen sessions started from various types of terminals

user@deb10:~/tiocspgrp$ make
as -o rootshell.o rootshell.S
ld -o rootshell rootshell.o --nmagic

gcc -Wall -o poc poc.c
user@deb10:~/tiocspgrp$./poc
starting up...
executing in first level child process, setting up session and PTY pair...

setting up unix sockets for ucreds spam...
draining pcpu and node partial pages
preparing for flushing pcpu partial pages
launching child process

child is 1448
ucreds spam done, struct pid refcount should be lifted. starting to skew refcount...
refcount should now be skewed, child exiting

child exited cleanly
waiting for RCU call...
bpf load with rlim 0x0: -1 (Operation not permitted)
bpf load with rlim 0x1000: 452 (Success)

bpf load success with rlim 0x1000: got fd 452
...
RCU callbacks executed
gonna try to free the pid...

double-free child died with signal 9 after dropping 9990 references (99%)
hopefully reallocated as an L1 pagetable now
PTE forcibly marked WRITE | DIRTY (hopefully)
clobber via corrupted PTE succeeded in page 0, 128-byte-allocation index 3, returned 856

clobber via corrupted PTE succeeded in page 0, 128-byte-allocation index 3, returned 856
bash: cannot set terminal process group (1447): Inappropriate ioctl for device
bash: no job control in this shell

root@deb10:/home/user/tiocspgrp# id
uid=0(root) gid=1000(user) groups=1000(user),24(cdrom),25(floppy),27(sudo),29(audio),30(dip),44(video),
root@deb10:/home/user/tiocspgrp#

Defence

Against bugs being reachable: Attack surface reduction

Things like webservers or phone apps won't normally need access to such devices; but there are exceptions. For
example:

a web server is used to provide a remote root shell for system administration

a phone app's purpose is to make a shell available to the user

a shell script uses expect to interact with a binary that requires a terminal for input/output

In my opinion, the biggest limits on attack surface reduction as a defensive strategy are:

1. It exposes a workaround to an implementation concern of the kernel (potential memory safety issues) in
user-facing API, which can lead to compatibility issues and maintenance overhead - for example, from a
security standpoint, I think it might be a good idea to require phone apps and systemd services to declare
their intention to use the PTY subsystem at install time, but that would be an API change requiring some sort
of action from application authors, creating friction that wouldn't be necessary if we were con�dent that the
kernel is working properly. This might get especially messy in the case of software that invokes external
binaries depending on con�guration, e.g. a web server that needs PTY access when it is used for server
administration. (This is somewhat less complicated when a benign-but-potentially-exploitable application
actively applies restrictions to itself; but not every application author is necessarily willing to design a �ne-
grained sandbox for their code, and even then, there may be compatibility issues caused by libraries outside
the application author's control.)

2. It can't protect a subsystem from a context that fundamentally needs access to it. (E.g. Android's
/dev/binder is directly accessible by Chrome renderers on Android because they have Android code
running inside them.)

3. It means that decisions that ought to not in�uence the security of a system (making an API that does not
grant extra privileges available to some potentially-untrusted context) essentially involve a security tradeo�.

Still, in practice, I believe that attack surface reduction mechanisms (especially seccomp) are currently some of the
most important defense mechanisms on Linux.

The bug in TIOCSPGRP was a fairly straightforward violation of a straightforward locking rule: While a tty_struct
is live, accessing its pgrp member is forbidden unless the ctrl_lock of the same tty_struct is held. This rule is
su�ciently simple that it wouldn't be entirely unreasonable to expect the compiler to be able to verify it - as long
as you somehow inform the compiler about this rule, because �guring out the intended locking rules just from
looking at a piece of code can often be hard even for humans (especially when some of the code is incorrect).

When you are starting a new project from scratch, the overall best way to approach this is to use a memory-safe
language - in other words, a language that has explicitly been designed such that the programmer has to provide
the compiler with enough information about intended memory safety semantics that the compiler can
automatically verify them. But for existing codebases, it might be worth looking into how much of this can be
retro�tted.

Clang's Thread Safety Analysis feature does something vaguely like what we'd need to verify the locking in this
situation:

However, this does not currently work when compiling as C code because the guarded_by attribute can't �nd the
other struct member; it seems to have been designed mostly for use in C++ code. A more fundamental problem is
that it also doesn't appear to have built-in support for distinguishing the di�erent rules for accessing a struct
member depending on the lifetime state of the object. For example, almost all objects with locked members will
have initialization/destruction functions that have exclusive access to the entire object and can access members
without locking. (The lock might not even be initialized in those states.)

Some objects also have more lifetime states; in particular, for many objects with RCU-managed lifetime, only a
subset of the members may be accessed through an RCU reference without having upgraded the reference to a

$ nl -ba -s' ' thread-safety-test.cpp | sed 's|^ ||'
 1 struct __attribute__((capability("mutex"))) mutex {

 2 };
 3
 4 void lock_mutex(struct mutex *p) __attribute__((acquire_capability(*p)));
 5 void unlock_mutex(struct mutex *p) __attribute__((release_capability(*p)));

 6
 7 struct foo {
 8 int a __attribute__((guarded_by(mutex)));
 9 struct mutex mutex;

 10 };
 11
 12 int good(struct foo *p1, struct foo *p2) {
 13 lock_mutex(&p1->mutex);

 14 int result = p1->a;
 15 unlock_mutex(&p1->mutex);
 16 return result;

 17 }
 18
 19 int bogus(struct foo *p1, struct foo *p2) {
 20 lock_mutex(&p1->mutex);

 21 int result = p2->a;
 22 unlock_mutex(&p1->mutex);
 23 return result;
 24 }

$ clang++ -c -o thread-safety-test.o thread-safety-test.cpp -Wall -Wthread-safety
thread-safety-test.cpp:21:22: warning: reading variable 'a' requires holding mutex 'p2->mutex' [-Wthrea
 int result = p2->a;
 ^

thread-safety-test.cpp:21:22: note: found near match 'p1->mutex'
1 warning generated.
$

Against bugs in source code: Compile-time locking validation

https://lwn.net/Articles/738694/
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://clang.llvm.org/docs/ThreadSafetyAnalysis.html

refcounted one beforehand. Perhaps this could be addressed by introducing a new type attribute that can be used
to mark pointers to structs in special lifetime states? (For C++ code, Clang's Thread Safety Analysis simply disables
all checks in all constructor/destructor functions.)

I am hopeful that, with some extensions, something vaguely like Clang's Thread Safety Analysis could be used to
retro�t some level of compile-time safety against unintended data races. This will require adding a lot of
annotations, in particular to headers, to document intended locking semantics; but such annotations are probably
anyway necessary to enable productive work on a complex codebase. In my experience, when there are no
detailed comments/annotations on locking rules, every attempt to change a piece of code you're not intimately
familiar with (without introducing horrible memory safety bugs) turns into a foray into the thicket of the
surrounding call graphs, trying to unravel the intentions behind the code.

The one big downside is that this requires getting the development community for the codebase on board with the
idea of back�lling and maintaining such annotations. And someone has to write the analysis tooling that can verify
the annotations.

At the moment, the Linux kernel does have some very coarse locking validation via sparse; but this infrastructure
is not capable of detecting situations where the wrong lock is used or validating that a struct member is protected
by a lock. It also can't properly deal with things like conditional locking, which makes it hard to use for anything
other than spinlocks/RCU. The kernel's runtime locking validation via LOCKDEP is more advanced, but mostly with a
focus on locking correctness of RCU pointers as well as deadlock detection (the main focus); again, there is no
mechanism to, for example,automatically validate that a given struct member is only accessed under a speci�c lock
(which would probably also be quite costly to implement with runtime validation). Also, as a runtime validation
mechanism, it can't discover errors in code that isn't executed during testing (although it can combine separately
observed behavior into race scenarios without ever actually observing the race).

An alternative approach to checking memory safety rules at compile time is to do it either after the entire
codebase has been compiled, or with an external tool that analyzes the entire codebase. This allows the analysis
tooling to perform analysis across compilation units, reducing the amount of information that needs to be made
explicit in headers. This may be a more viable approach if peppering annotations everywhere across headers isn't
viable; but it also reduces the utility to human readers of the code, unless the inferred semantics are made visible
to them through some special code viewer. It might also be less ergonomic in the long run if changes to one part of
the kernel could make the veri�cation of other parts fail - especially if those failures only show up in some
con�gurations.

I think global static analysis is probably a good tool for �nding some subsets of bugs, and it might also help with
�nding the worst-case depth of kernel stacks or proving the absence of deadlocks, but it's probably less suited for
proving memory safety correctness?

(Yes, I made up that name because I thought that capturing this under "Attack surface reduction" is too muddy.)

Because allocator fastpaths (both in SLUB and in the page allocator) are implemented using per-CPU data
structures, the ease and reliability of exploits that want to coax the kernel's memory allocators into reallocating
memory in speci�c ways can be improved if the attacker has �ne-grained control over the assignment of exploit
threads to CPU cores. I'm calling such a capability, which provides a way to facilitate exploitation by in�uencing
relevant system state/behavior, an "attack primitive" here. Luckily for us, Linux allows tasks to pin themselves to
speci�c CPU cores without requiring any privilege using the sched_setaffinity() syscall.

(As a di�erent example, one primitive that can provide an attacker with fairly powerful capabilities is being able to
inde�nitely stall kernel faults on userspace addresses via FUSE or userfaultfd.)

Just like in the section "Attack surface reduction" above, an attacker's ability to use these primitives can be reduced
by �ltering syscalls; but while the mechanism and the compatibility concerns are similar, the rest is fairly di�erent:

Attack primitive reduction does not normally reliably prevent a bug from being exploited; and an attacker will
sometimes even be able to obtain a similar but shoddier (more complicated, less reliable, less generic, ...) primitive
indirectly, for example:

Instead of sched_setaffinity(), an attacker could attempt to launch several threads, let them poll
getcpu() to �gure out which cores they're running on, and then dispatch work to the threads as
appropriate.

Instead of delaying page faults with FUSE or userfaultfd, an attacker may be able to abuse discontiguous
�le mappings and scheduler behavior.

Attack surface reduction is about limiting access to code that is suspected to contain exploitable bugs; in a
codebase written in a memory-unsafe language, that tends to apply to pretty much the entire codebase. Attack
surface reduction is often fairly opportunistic: You permit the things you need, and deny the rest by default.

Attack primitive reduction limits access to code that is suspected or known to provide (sometimes very speci�c)
exploitation primitives. For example, one might decide to speci�cally forbid access to FUSE and userfaultfd for
most code because of their utility for kernel exploitation, and, if one of those interfaces is truly needed, design a
workaround that avoids exposing the attack primitive to userspace. This is di�erent from attack surface reduction,
where it often makes sense to permit access to any feature that a legitimate workload wants to use.

A nice example of an attack primitive reduction is the sysctl vm.unprivileged_userfaultfd, which was �rst
introduced so that userfaultfd can be made completely inaccessible to normal users and was then later adjusted
so that users can be granted access to part of its functionality without gaining the dangerous attack primitive. (But
if you can create unprivileged user namespaces, you can still use FUSE to get an equivalent e�ect.)

When maintaining lists of allowed syscalls for a sandboxed system component, or something along those lines, it
may be a good idea to explicitly track which syscalls are explicitly forbidden for attack primitive reduction reasons,

Against bugs in source code: Global static locking analysis

Against exploit primitives: Attack primitive reduction via syscall
restrictions

https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html#:~:text=pause%20the%20kernel%20thread
https://static.sched.com/hosted_files/lsseu2019/04/LSSEU2019%20-%20Exploiting%20race%20conditions%20on%20Linux.pdf#page=30
https://git.kernel.org/linus/cefdca0a86be
https://git.kernel.org/linus/d0d4730ac2e4
https://twitter.com/tehjh/status/1438330352075001856

or similarly strong reasons - otherwise one might accidentally end up permitting them in the future. (I guess that's
kind of similar to issues that one can run into when maintaining ACLs...)

But like in the previous section, attack primitive reduction also tends to rely on making some functionality
unavailable, and so it might not be viable in all situations. For example, newer versions of Android deliberately
indirectly give apps access to FUSE through the AppFuse mechanism. (That API doesn't actually give an app direct
access to /dev/fuse, but it does forward read/write requests to the app.)

The ability to recover from kernel oopses in an exploit can help an attacker compensate for a lack of information
about system state. Under some circumstances, it can even serve as a binary oracle that can be used to more or
less perform a binary search for a value, or something like that.

(It used to be even worse on some distributions, where dmesg was accessible for unprivileged users; so if you
managed to trigger an oops or WARN, you could then grab the register states at all IRET frames in the kernel stack,
which could be used to leak things like kernel pointers. Luckily nowadays most distributions, including Ubuntu
20.10, restrict dmesg access.)

Android and Chrome OS nowadays set the kernel's panic_on_oops �ag, meaning the machine will immediately
restart when a kernel oops happens. This makes it hard to use oopsing as part of an exploit, and arguably also
makes more sense from a reliability standpoint - the system will be down for a bit, and it will lose its existing state,
but it will also reset into a known-good state instead of continuing in a potentially half-broken state, especially if
the crashing thread was holding mutexes that can never again be released, or things like that. On the other hand,
if some service crashes on a desktop system, perhaps that shouldn't cause the whole system to immediately go
down and make you lose unsaved state - so panic_on_oops might be too drastic there.

A good solution to this might require a more �ne-grained approach. (For example, grsecurity has for a long time
had the ability to lock out speci�c UIDs that have caused crashes.) Perhaps it would make sense to allow the init
daemon to use di�erent policies for crashes in di�erent services/sessions/UIDs?

One defense that would reliably stop an exploit for this issue would be a deterministic use-after-free mitigation.
Such a mitigation would reliably protect the memory formerly occupied by the object from accesses through
dangling pointers to the object, at least once the memory has been reused for a di�erent purpose (including reuse
to store heap metadata). For write operations, this probably requires either atomicity of the access check and the
actual write or an RCU-like delayed freeing mechanism. For simple read operations, it can also be implemented by
ordering the access check after the read, but before the read value is used.

A big downside of this approach on its own is that extra checks on every memory access will probably come with
an extremely high e�ciency penalty, especially if the mitigation can not make any assumptions about what kinds
of parallel accesses might be happening to an object, or what semantics pointers have. (The proof-of-concept
implementation I presented at LSSNA 2020 (slides, recording) had CPU overhead roughly in the range 60%-159% in
kernel-heavy benchmarks, and ~8% for a very userspace-heavy benchmark.)

Unfortunately, even a deterministic use-after-free mitigation often won't be enough to deterministically limit the
blast radius of something like a refcounting mistake to the object in which it occurred. Consider a case where two
codepaths concurrently operate on the same object: Codepath A assumes that the object is live and subject to
normal locking rules. Codepath B knows that the reference count reached zero, assumes that it therefore has
exclusive access to the object (meaning all members are mutable without any locking requirements), and is trying
to tear down the object. Codepath B might then start dropping references the object was holding on other objects
while codepath A is following the same references. This could then lead to use-after-frees on pointed-to objects. If
all data structures are subject to the same mitigation, this might not be too much of a problem; but if some data
structures (like struct page) are not protected, it might permit a mitigation bypass.

Similar issues apply to data structures with union members that are used in di�erent object states; for example,
here's some random kernel data structure with an rcu_head in a union (just a random example, there isn't
anything wrong with this code as far as I know):

struct allowedips_node {
 struct wg_peer __rcu *peer;
 struct allowedips_node __rcu *bit[2];
 /* While it may seem scandalous that we waste space for v4,

 * we're alloc'ing to the nearest power of 2 anyway, so this
 * doesn't actually make a difference.
 */

 u8 bits[16] __aligned(__alignof(u64));
 u8 cidr, bit_at_a, bit_at_b, bitlen;

 /* Keep rarely used list at bottom to be beyond cache line. */

 union {
 struct list_head peer_list;
 struct rcu_head rcu;
 };

};

As long as everything is working properly, the peer_list member is only used while the object is live, and the rcu
member is only used after the object has been scheduled for delayed freeing; so this code is completely �ne. But if
a bug somehow caused the peer_list to be read after the rcu member has been initialized, type confusion
would result.

In my opinion, this demonstrates that while UAF mitigations do have a lot of value (and would have reliably
prevented exploitation of this speci�c bug), a use-after-free is just one possible consequence of the symptom class
"object state confusion" (which may or may not be the same as the bug class of the root cause). It would be even
better to enforce rules on object states, and ensure that an object e.g. can't be accessed through a "refcounted"
reference anymore after the refcount has reached zero and has logically transitioned into a state like "non-RCU

Against oops-based oracles: Lockout or panic on crash

Against UAF access: Deterministic UAF mitigation

https://developer.android.com/reference/android/os/storage/StorageManager#openProxyFileDescriptor(int,%20android.os.ProxyFileDescriptorCallback,%20android.os.Handler)
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html#:~:text=Leaking%20pointers%20from%20dmesg
https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/groovy/commit/?id=f2fac7568f6acdb37de0696717f23dedc02fbe48
https://static.sched.com/hosted_files/lssna2020/0b/LSSNA_2020_Jann_Horn_UAF_Mitigation.pdf
https://www.youtube.com/watch?v=uE1w0Mxldwk

members are exclusively owned by thread performing teardown" or "RCU callback pending, non-RCU members are
uninitialized" or "exclusive access to RCU-protected members granted to thread performing teardown, other
members are uninitialized". Of course, doing this as a runtime mitigation would be even costlier and messier than
a reliable UAF mitigation; this level of protection is probably only realistic with at least some level of annotations
and static validation.

Summary: Some types of probabilistic UAF mitigation break if the attacker can leak information about pointer
values; and information about pointer values easily leaks to userspace, e.g. through pointer comparisons in
map/set-like structures.

If a deterministic UAF mitigation is too costly, an alternative is to do it probabilistically; for example, by tagging
pointers with a small number of bits that are checked against object metadata on access, and then changing that
object metadata when objects are freed.

The downside of this approach is that information leaks can be used to break the protection. One example of a
type of information leak that I'd like to highlight (without any judgment on the relative importance of this
compared to other types of information leaks) are intentional pointer comparisons, which have quite a few facets.

A relatively straightforward example where this could be an issue is the kcmp() syscall. This syscall compares two
kernel objects using an arithmetic comparison of their permuted pointers (using a per-boot randomized
permutation, see kptr_obfuscate()) and returns the result of the comparison (smaller, equal or greater). This
gives userspace a way to order handles to kernel objects (e.g. �le descriptors) based on the identities of those
kernel objects (e.g. struct file instances), which in turn allows userspace to group a set of such handles by
backing kernel object in O(n*log(n)) time using a standard sorting algorithm.

This syscall can be abused for improving the reliability of use-after-free exploits against some struct types because
it checks whether two pointers to kernel objects are equal without accessing those objects: An attacker can
allocate an object, somehow create a reference to the object that is not counted properly, free the object,
reallocate it, and then verify whether the reallocation indeed reused the same address by comparing the dangling
reference and a reference to the new object with kcmp(). If kcmp() includes the pointer's tag bits in the
comparison, this would likely also permit breaking probabilistic UAF mitigations.

Essentially the same concern applies when a kernel pointer is encrypted and then given to userspace in
fuse_lock_owner_id(), which encrypts the pointer to a files_struct with an open-coded version of XTEA
before passing it to a FUSE daemon.

In both these cases, explicitly stripping tag bits would be an acceptable workaround because a pointer without tag
bits still uniquely identi�es a memory location; and given that these are very special interfaces that intentionally
expose some degree of information about kernel pointers to userspace, it would be reasonable to adjust this code
manually.

A somewhat more interesting example is the behavior of this piece of userspace code:

#define _GNU_SOURCE
#include <sys/epoll.h>

#include <sys/eventfd.h>
#include <sys/resource.h>
#include <err.h>
#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <sched.h>

#define SYSCHK(x) ({ \
 typeof(x) __res = (x); \
 if (__res == (typeof(x))-1) \

 err(1, "SYSCHK(" #x ")"); \
 __res; \
})

int main(void) {
 struct rlimit rlim;
 SYSCHK(getrlimit(RLIMIT_NOFILE, &rlim));
 rlim.rlim_cur = rlim.rlim_max;

 SYSCHK(setrlimit(RLIMIT_NOFILE, &rlim));

 cpu_set_t cpuset;
 CPU_ZERO(&cpuset);

 CPU_SET(0, &cpuset);
 SYSCHK(sched_setaffinity(0, sizeof(cpuset), &cpuset));

 int epfd = SYSCHK(epoll_create1(0));
 for (int i=0; i<1000; i++)
 SYSCHK(eventfd(0, 0));
 for (int i=0; i<192; i++) {

 int fd = SYSCHK(eventfd(0, 0));
 struct epoll_event event = {
 .events = EPOLLIN,
 .data = { .u64 = i }

 };
 SYSCHK(epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &event));
 }

 char cmd[100];
 sprintf(cmd, "cat /proc/%d/fdinfo/%d", getpid(), epfd);
 system(cmd);

}

Against UAF access: Probabilistic UAF mitigation; pointer leaks

https://man7.org/linux/man-pages/man2/kcmp.2.html
https://en.wikipedia.org/wiki/XTEA

It �rst creates a ton of eventfds that aren't used. Then it creates a bunch more eventfds and creates epoll watches
for them, in creation order, with a monotonically incrementing counter in the "data" �eld. Afterwards, it asks the
kernel to print the current state of the epoll instance, which comes with a list of all registered epoll watches,
including the value of the data member (in hex). But how is this list sorted? Here's the result of running that code
in a Ubuntu 20.10 VM (truncated, because it's a bit long):

user@ubuntuvm:~/epoll_fdinfo$./epoll_fdinfo

pos: 0
flags: 02
mnt_id: 14

tfd: 1040 events: 19 data: 24 pos:0 ino:2f9a sdev:d
tfd: 1050 events: 19 data: 2e pos:0 ino:2f9a sdev:d
tfd: 1024 events: 19 data: 14 pos:0 ino:2f9a sdev:d
tfd: 1029 events: 19 data: 19 pos:0 ino:2f9a sdev:d

tfd: 1048 events: 19 data: 2c pos:0 ino:2f9a sdev:d
tfd: 1042 events: 19 data: 26 pos:0 ino:2f9a sdev:d
tfd: 1026 events: 19 data: 16 pos:0 ino:2f9a sdev:d
tfd: 1033 events: 19 data: 1d pos:0 ino:2f9a sdev:d

[...]

The data: �eld here is the loop index we stored in the .data member, formatted as hex. Here is the complete list
of the data values in decimal:

While these look sort of random, you can see that the list can be split into blocks of length 32 that consist of
shu�ed contiguous sequences of numbers:

What's going on here becomes clear when you look at the data structures epoll uses internally. ep_insert calls
ep_rbtree_insert to insert a struct epitem into a red-black tree (a type of sorted binary tree); and this red-
black tree is sorted using a tuple of a struct file * and a �le descriptor number:

/* Compare RB tree keys */
static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 struct epoll_filefd *p2)

{
 return (p1->file > p2->file ? +1:
 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
}

So the values we're seeing have been ordered based on the virtual address of the corresponding struct file;
and SLUB allocates struct file from order-1 pages (i.e. pages of size 8 KiB), which can hold 32 objects each:

root@ubuntuvm:/sys/kernel/slab/filp# cat order
1
root@ubuntuvm:/sys/kernel/slab/filp# cat objs_per_slab

32
root@ubuntuvm:/sys/kernel/slab/filp#

This explains the grouping of the numbers we saw: Each block of 32 contiguous values corresponds to an order-1
page that was previously empty and is used by SLUB to allocate objects until it becomes full.

With that knowledge, we can transform those numbers a bit, to show the order in which objects were allocated
inside each page (excluding pages for which we haven't seen all allocations):

36, 46, 20, 25, 44, 38, 22, 29, 30, 45, 33, 28, 41, 31, 23, 37, 24, 50, 32, 26, 21, 43, 35, 48, 27, 39,

Block 1 (32 values in range 19-50):
36, 46, 20, 25, 44, 38, 22, 29, 30, 45, 33, 28, 41, 31, 23, 37, 24, 50, 32, 26, 21, 43, 35, 48, 27, 39,

Block 2 (32 values in range 83-114):
95, 105, 111, 84, 103, 97, 113, 88, 89, 104, 92, 87, 100, 90, 114, 96, 83, 109, 91, 85, 112, 102, 94, 1

Block 3 (19 values in range 0-18):

12, 1, 14, 5, 6, 9, 4, 17, 7, 13, 0, 8, 2, 11, 3, 15, 16, 18, 10

Block 4 (32 values in range 115-146):
135, 145, 119, 124, 143, 137, 121, 128, 129, 144, 132, 127, 140, 130, 122, 136, 123, 117, 131, 125, 120

Block 5 (32 values in range 51-82):
66, 76, 82, 55, 74, 68, 52, 59, 60, 75, 63, 58, 71, 61, 53, 67, 54, 80, 62, 56, 51, 73, 65, 78, 57, 69,

Block 6 (32 values in range 147-178):
177, 155, 161, 166, 153, 147, 163, 170, 171, 154, 174, 169, 150, 172, 164, 178, 165, 159, 173, 167, 162

Block 7 (13 values in range 179-191):
186, 188, 179, 180, 183, 191, 181, 187, 182, 185, 189, 190, 184

$ cat slub_demo.py
#!/usr/bin/env python3
blocks = [
 [36, 46, 20, 25, 44, 38, 22, 29, 30, 45, 33, 28, 41, 31, 23, 37, 24, 50, 32, 26, 21, 43, 35, 48, 27,

 [95, 105, 111, 84, 103, 97, 113, 88, 89, 104, 92, 87, 100, 90, 114, 96, 83, 109, 91, 85, 112, 102, 9
 [12, 1, 14, 5, 6, 9, 4, 17, 7, 13, 0, 8, 2, 11, 3, 15, 16, 18, 10],
 [135, 145, 119, 124, 143, 137, 121, 128, 129, 144, 132, 127, 140, 130, 122, 136, 123, 117, 131, 125,
 [66, 76, 82, 55, 74, 68, 52, 59, 60, 75, 63, 58, 71, 61, 53, 67, 54, 80, 62, 56, 51, 73, 65, 78, 57,

 [177, 155, 161, 166, 153, 147, 163, 170, 171, 154, 174, 169, 150, 172, 164, 178, 165, 159, 173, 167,

And these sequences are almost the same, except that they have been rotated around by di�erent amounts. This
is exactly the SLUB freelist randomization scheme, as introduced in commit 210e7a43fa905!

When a SLUB kmem_cache is created (an instance of the SLUB allocator for a speci�c size class and potentially
other speci�c attributes, usually initialized at boot time), init_cache_random_seq and
cache_random_seq_create �ll an array ->random_seq with randomly-ordered object indices via Fisher-Yates
shu�e, with the array length equal to the number of objects that �t into a page. Then, whenever SLUB grabs a new
page from the lower-level page allocator, it initializes the page freelist using the indices from ->random_seq,
starting at a random index in the array (and wrapping around when the end is reached). (I'm ignoring the low-
order allocation fallback here.)

So in summary, we can bypass SLUB randomization for the slab from which struct file is allocated because
someone used it as a lookup key in a speci�c type of data structure. This is already fairly undesirable if SLUB
randomization is supposed to provide protection against some types of local attacks for all slabs.

The heap-randomization-weakening e�ect of such data structures is not necessarily limited to cases where
elements of the data structure can be listed in-order by userspace: If there was a codepath that iterated through
the tree in-order and freed all tree nodes, that could have a similar e�ect, because the objects would be placed on
the allocator's freelist sorted by address, cancelling out the randomization. In addition, you might be able to leak
information about iteration order through cache side channels or such.

If we introduce a probabilistic use-after-free mitigation that relies on attackers not being able to learn whether the
uppermost bits of an object's address changed after it was reallocated, this data structure could also break that.
This case is messier than things like kcmp() because here the address ordering leak stems from a standard data
structure.

You may have noticed that some of the examples I'm using here would be more or less limited to cases where an
attacker is reallocating memory with the same type as the old allocation, while a typical use-after-free attack ends
up replacing an object with a di�erently-typed one to cause type confusion. As an example of a bug that can be
exploited for privilege escalation without type confusion at the C structure level, see entry 808 in our bugtracker.
My exploit for that bug �rst starts a writev() operation on a writable �le, lets the kernel validate that the �le is
indeed writable, then replaces the struct file with a read-only file pointing to /etc/crontab, and lets
writev() continue. This allows gaining root privileges through a use-after-free bug without having to mess
around with kernel pointers, data structure layouts, ROP, or anything like that. Of course that approach doesn't
work with every use-after-free though.

(By the way: For an example of pointer leaks through container data structures in a JavaScript engine, see this bug I
reported to Firefox back in 2016, when I wasn't a Google employee, which leaks the low 32 bits of a pointer by
timing operations on pessimal hash tables - basically turning the HashDoS attack into an infoleak. Of course,
nowadays, a side-channel-based pointer leak in a JS engine would probably not be worth treating as a security bug
anymore, since you can probably get the same result with Spectre...)

(Also discussed a little bit on the kernel-hardening list in this thread.)

A weaker but less CPU-intensive alternative to trying to provide complete use-after-free protection for individual
objects would be to ensure that virtual addresses that have been used for slab memory are never reused outside
the slab, but that physical pages can still be reused. This would be the same basic approach as used by
PartitionAlloc and others. In kernel terms, that would essentially mean serving SLUB allocations from vmalloc
space.

Some challenges I can think of with this approach are:

SLUB allocations are currently served from the linear mapping, which normally uses hugepages; if
vmalloc mappings with 4K PTEs were used instead, TLB pressure might increase, which might lead to
some performance degradation.

To be able to use SLUB allocations in contexts that operate directly on physical memory, it is sometimes
necessary for SLUB pages to be physically contiguous. That's not really a problem, but it is di�erent
from default vmalloc behavior. (Sidenote: DMA bu�ers don't always have to be physically contiguous - if
you have an IOMMU, you can use that to map discontiguous pages to a contiguous DMA address range,
just like how normal page tables create virtually-contiguous memory. See this kernel-internal API for an
example that makes use of this, and Fuchsia's documentation for a high-level overview of how all this
works in general.)

 [186, 188, 179, 180, 183, 191, 181, 187, 182, 185, 189, 190, 184]
]

for alloc_indices in blocks:
 if len(alloc_indices) != 32:
 continue

 # indices of allocations ('data'), sorted by memory location, shifted to be relative to the block
 alloc_indices_relative = [position - min(alloc_indices) for position in alloc_indices]
 # reverse mapping: memory locations of allocations,
 # sorted by index of allocation ('data').

 # if we've observed all allocations in a page,
 # these will really be indices into the page.
 memory_location_by_index = [alloc_indices_relative.index(idx) for idx in range(0, len(alloc_indices))
 print(memory_location_by_index)

$./slub_demo.py
[31, 2, 20, 6, 14, 16, 3, 19, 24, 11, 7, 8, 13, 18, 10, 29, 22, 0, 15, 5, 25, 26, 12, 28, 21, 4, 9, 1,
[16, 3, 19, 24, 11, 7, 8, 13, 18, 10, 29, 22, 0, 15, 5, 25, 26, 12, 28, 21, 4, 9, 1, 27, 23, 30, 17, 31

[23, 30, 17, 31, 2, 20, 6, 14, 16, 3, 19, 24, 11, 7, 8, 13, 18, 10, 29, 22, 0, 15, 5, 25, 26, 12, 28, 2
[20, 6, 14, 16, 3, 19, 24, 11, 7, 8, 13, 18, 10, 29, 22, 0, 15, 5, 25, 26, 12, 28, 21, 4, 9, 1, 27, 23,
[5, 25, 26, 12, 28, 21, 4, 9, 1, 27, 23, 30, 17, 31, 2, 20, 6, 14, 16, 3, 19, 24, 11, 7, 8, 13, 18, 10,

Against freeing SLUB pages: Preventing virtual address reuse beyond
the slab

https://git.kernel.org/linus/210e7a43fa905
https://bugs.chromium.org/p/project-zero/issues/detail?id=808
https://thejh.net/misc/firefox-cve-2016-9904-and-cve-2017-5378-bugreport
https://lore.kernel.org/kernel-hardening/20201006004414.GP20115@casper.infradead.org/
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md#security
https://git.kernel.org/linus/7d5b5738d151
https://fuchsia.dev/fuchsia-src/concepts/drivers/driver_development/dma

Some parts of the kernel convert back and forth between virtual addresses, struct page pointers, and
(for interaction with hardware) physical addresses. This is a relatively straightforward mapping for
addresses in the linear mapping, but would become a bit more complicated for vmalloc addresses. In
particular, page_to_virt() and phys_to_virt() would have to be adjusted.

This is probably also going to be an issue for things like Memory Tagging, since pointer tags
will have to be reconstructed when converting back to a virtual address. Perhaps it would
make sense to forbid these helpers outside low-level memory management, and change
existing users to instead keep a normal pointer to the allocation around? Or maybe you could
let pointers to struct page carry the tag bits for the corresponding virtual address in
unused/ignored address bits?

The probability that this defense can prevent UAFs from leading to exploitable type confusion depends somewhat
on the granularity of slabs; if speci�c struct types have their own slabs, it provides more protection than if objects
are only grouped by size. So to improve the utility of virtually-backed slab memory, it would be necessary to
replace the generic kmalloc slabs (which contain various objects, grouped only by size) with ones that are
segregated by type and/or allocation site. (The grsecurity/PaX folks have vaguely alluded to doing something
roughly along these lines using compiler instrumentation.)

Memory safety issues are often exploited in a way that involves creating a type confusion; e.g. exploiting a use-
after-free by replacing the freed object with a new object of a di�erent type.

A defense that �rst appeared in grsecurity/PaX is to shu�e the order of struct members at build time to make it
harder to exploit type confusions involving structs; the upstream Linux version of this is in scripts/gcc-
plugins/randomize_layout_plugin.c.

How e�ective this is depends partly on whether the attacker is forced to exploit the issue as a confusion between
two structs, or whether the attacker can instead exploit it as a confusion between a struct and an array (e.g.
containing characters, pointers or PTEs). Especially if only a single struct member is accessed, a struct-array
confusion might still be viable by spraying the entire array with identical elements. Against the type confusion
described in this blogpost (between struct pid and page table entries), structure layout randomization could still
be somewhat e�ective, since the reference count is half the size of a PTE and therefore can randomly be placed to
overlap either the lower or the upper half of a PTE. (Except that the upstream Linux version of randstruct only
randomizes explicitly-marked structs or structs containing only function pointers, and struct pid has no such
marking.)

Of course, drawing a clear distinction between structs and arrays oversimpli�es things a bit; for example, there
might be struct types that have a large number of pointers of the same type or attacker-controlled values, not
unlike an array.

If the attacker can not completely sidestep structure layout randomization by spraying the entire struct, the level of
protection depends on how kernel builds are distributed:

If the builds are created centrally by one vendor and distributed to a large number of users, an attacker
who wants to be able to compromise users of this vendor would have to rework their exploit to use a
di�erent type confusion for each release, which may force the attacker to rewrite signi�cant chunks of
the exploit.

If the kernel is individually built per machine (or similar), and the kernel image is kept secret, an attacker
who wants to reliably exploit a target system may be forced to somehow leak information about some
structure layouts and either prepare exploits for many di�erent possible struct layouts in advance or
write parts of the exploit interactively after leaking information from the target system.

To maximize the bene�t of structure layout randomization in an environment where kernels are built centrally by a
distribution/vendor, it would be necessary to make randomization a boot-time process by making structure o�sets
relocatable. (Or install-time, but that would break code signing.) Doing this cleanly (for example, such that 8-bit and
16-bit immediate displacements can still be used for struct member access where possible) would probably
require a lot of �ddling with compiler internals, from the C frontend all the way to the emission of relocations. A
somewhat hacky version of this approach already exists for C->BPF compilation as BPF CO-RE, using the clang
builtin __builtin_preserve_access_index, but that relies on debuginfo, which probably isn't a very clean
approach.

Potential issues with structure layout randomization are:

If structures are hand-crafted to be particularly cache-e�cient, fully randomizing structure layout could
worsen cache behavior. The existing randstruct implementation optionally avoids this by trying to
randomize only within a cache line.

Unless the randomization is applied in a way that is re�ected in DWARF debug info and such (which it
isn't in the existing GCC-based implementation), it can make debugging and introspection harder.

It can break code that makes assumptions about structure layout; but such code is gross and should be
cleaned up anyway (and Gustavo Silva has been working on �xing some of those issues).

While structure layout randomization by itself is limited in its e�ectiveness by struct-array confusions, it might be
more reliable in combination with limited heap partitioning: If the heap is partitioned such that only struct-struct
confusion is possible, and structure layout randomization makes struct-struct confusion di�cult to exploit, and no
struct in the same heap partition has array-like properties, then it would probably become much harder to directly
exploit a UAF as type confusion. On the other hand, if the heap is already partitioned like that, it might make more
sense to go all the way with heap partitioning and create one partition per type instead of dealing with all the
hassle of structure layout randomization.

(By the way, if structure layouts are randomized, padding should probably also be randomized explicitly instead of
always being on the same side to maximally randomize structure members with low alignment; see my list post on
this topic for details.)

After reallocation as pagetable: Structure layout randomization

Control Flow Integrity

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-plugins/randomize_layout_plugin.c
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://clang.llvm.org/docs/LanguageExtensions.html#builtin-preserve-access-index
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84052
https://github.com/KSPP/linux/issues/109
https://lore.kernel.org/kernel-hardening/CAG48ez1Mr1FNCDGFscVg0SpuuA_Z4tn=WJhEqJVWW1rOuRiG2w@mail.gmail.com/

I want to explicitly point out that kernel Control Flow Integrity would have had no impact at all on this exploit
strategy. By using a data-only strategy, we avoid having to leak addresses, avoid having to �nd ROP gadgets for a
speci�c kernel build, and are completely una�ected by any defenses that attempt to protect kernel code or kernel
control �ow. Things like getting access to arbitrary �les, increasing the privileges of a process, and so on don't
require kernel instruction pointer control.

Like in my last blogpost on Linux kernel exploitation (which was about a buggy subsystem that an Android vendor
added to their downstream kernel), to me, a data-only approach to exploitation feels very natural and seems less
messy than trying to hijack control �ow anyway.

Maybe things are di�erent for userspace code; but for attacks by userspace against the kernel, I don't currently see
a lot of utility in CFI because it typically only a�ects one of many possible methods for exploiting a bug. (Although
of course there could be speci�c cases where a bug can only be exploited by hijacking control �ow, e.g. if a type
confusion only permits overwriting a function pointer and none of the permitted callees make assumptions about
input types or privileges that could be broken by changing the function pointer.)

A defense idea that has shown up in a bunch of places (including Samsung phone kernels and XNU kernels for iOS)
is to make data that is crucial to kernel security read-only except when it is intentionally being written to - the idea
being that even if an attacker has an arbitrary memory write, they should not be able to directly overwrite speci�c
pieces of data that are of exceptionally high importance to system security, such as credential structures, page
tables, or (on iOS, using PPL) userspace code pages.

The problem I see with this approach is that a large portion of the things a kernel does are, in some way, critical to
the correct functioning of the system and system security. MMU state management, task scheduling, memory
allocation, �lesystems, page cache, IPC, ... - if any one of these parts of the kernel is corrupted su�ciently badly, an
attacker will probably be able to gain access to all user data on the system, or use that corruption to feed bogus
inputs into one of the subsystems whose own data structures are read-only.

In my view, instead of trying to split out the most critical parts of the kernel and run them in a context with higher
privileges, it might be more productive to go in the opposite direction and try to approximate something like a
proper microkernel: Split out drivers that don't strictly need to be in the kernel and run them in a lower-privileged
context that interacts with the core kernel through proper APIs. Of course that's easier said than done! But Linux
does already have APIs for safely accessing PCI devices (VFIO) and USB devices from userspace, although
userspace drivers aren't exactly its main usecase.

(One might also consider making page tables read-only not because of their importance to system integrity, but
because the structure of page table entries makes them nicer to work with in exploits that are constrained in what
modi�cations they can make to memory. I dislike this approach because I think it has no clear conclusion and it is
highly invasive regarding how data structures can be laid out.)

This was essentially a boring locking bug in some random kernel subsystem that, if it wasn't for memory unsafety,
shouldn't really have much of a relevance to system security. I wrote a fairly straightforward, unexciting (and
admittedly unreliable) exploit against this bug; and probably the biggest challenge I encountered when trying to
exploit it on Debian was to properly understand how the SLUB allocator works.

My intent in describing the exploit stages, and how di�erent mitigations might a�ect them, is to highlight that the
further a memory corruption exploit progresses, the more options an attacker gains; and so as a general rule, the
earlier an exploit is stopped, the more reliable the defense is. Therefore, even if defenses that stop an exploit at an
earlier point have higher overhead, they might still be more useful.

I think that the current situation of software security could be dramatically improved - in a world where a little bug
in some random kernel subsystem can lead to a full system compromise, the kernel can't provide reliable security
isolation. Security engineers should be able to focus on things like buggy permission checks and core memory
management correctness, and not have to spend their time dealing with issues in code that ought to not have any
relevance to system security.

In the short term, there are some band-aid mitigations that could be used to improve the situation - like heap
partitioning or �ne-grained UAF mitigation. These might come with some performance cost, and that might make
them look unattractive; but I still think that they're a better place to invest development time than things like CFI,
which attempts to protect against much later stages of exploitation.

In the long term, I think something has to change about the programming language - plain C is simply too error-
prone. Maybe the answer is Rust; or maybe the answer is to introduce enough annotations to C (along the lines of
Microsoft's Checked C project, although as far as I can see they mostly focus on things like array bounds rather
than temporal issues) to allow Rust-equivalent build-time veri�cation of locking rules, object states, refcounting,
void pointer casts, and so on. Or maybe another completely di�erent memory-safe language will become popular
in the end, neither C nor Rust?

My hope is that perhaps in the mid-term future, we could have a statically veri�ed, high-performance core of
kernel code working together with instrumented, runtime-veri�ed, non-performance-critical legacy code, such that
developers can make a tradeo� between investing time into back�lling correct annotations and run-time
instrumentation slowdown without compromising on security either way.

memory corruption is a big problem because small bugs even outside security-related code can lead to a complete
system compromise; and to address that, it is important that we:

in the short to medium term:

design new memory safety mitigations:

ideally, that can stop attacks at an early point where attackers don't have a lot of
alternate options yet

Making important data readonly

Conclusion

TL;DR

https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://googleprojectzero.blogspot.com/2020/07/the-core-of-apple-is-ppl-breaking-xnu.html
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://www.microsoft.com/en-us/research/project/checked-c/

Newer Post Older PostHome

Subscribe to: Post Comments (Atom)

Posted by Ryan at 9:08 AM

maybe at the memory allocator level (i.e. SLUB)

that can't be broken using address tag leaks (or we try to prevent tag leaks, but
that's really hard)

continue using attack surface reduction

in particular seccomp

explicitly prevent untrusted code from gaining important attack primitives

like FUSE, and potentially consider �ne-grained scheduler control

in the long term:

statically verify correctness of most performance-critical code

this will require determining how to retro�t annotations for object state and
locking onto legacy C code

consider designing runtime veri�cation just for gaps in static veri�cation

Sign out

 Notify me

Comment as: jp@taurusgroup

PublishPublish PreviewPreview

Enter your comment...

No comments:

Post a Comment

Simple theme. Powered by Blogger.

https://googleprojectzero.blogspot.com/2021/10/using-kerberos-for-authentication-relay.html
https://googleprojectzero.blogspot.com/2021/09/fuzzing-closed-source-javascript.html
https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/feeds/8464515825658328843/comments/default
https://www.blogger.com/profile/17011901605865574886
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8464515825658328843&target=email
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8464515825658328843&target=blog
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8464515825658328843&target=twitter
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8464515825658328843&target=facebook
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=8464515825658328843&target=pinterest
https://googleprojectzero.blogspot.com/logout?d=https://www.blogger.com/logout-redirect.g?blogID%3D4838136820032157985%26postID%3D8464515825658328843
https://www.blogger.com/profile/13627889645834868420
https://www.blogger.com/

