
News and updates from the Project Zero team at Google

Project ZeroProject Zero

W e d n e s d a y , D e c e m b e r 1 5 , 2 0 2 1

A deep dive into an NSO zero-click iMessage exploit: Remote Code
Execution

Posted by Ian Beer & Samuel Groß of Google Project Zero

We want to thank Citizen Lab for sharing a sample of the FORCEDENTRY exploit with us, and Apple’s
Security Engineering and Architecture (SEAR) group for collaborating with us on the technical analysis. The
editorial opinions reflected below are solely Project Zero’s and do not necessarily reflect those of the
organizations we collaborated with during this research.

Earlier this year, Citizen Lab managed to capture an NSO iMessage-based zero-click exploit being used to
target a Saudi activist. In this two-part blog post series we will describe for the first time how an in-the-wild
zero-click iMessage exploit works.

Based on our research and findings, we assess this to be one of the most technically sophisticated exploits
we've ever seen, further demonstrating that the capabilities NSO provides rival those previously thought to
be accessible to only a handful of nation states.

The vulnerability discussed in this blog post was fixed on September 13, 2021 in iOS 14.8 as CVE-2021-
30860.

NSO

NSO Group is one of the highest-profile providers of "access-as-a-service", selling packaged hacking
solutions which enable nation state actors without a home-grown offensive cyber capability to "pay-to-play",
vastly expanding the number of nations with such cyber capabilities.

For years, groups like Citizen Lab and Amnesty International have been tracking the use of NSO's mobile
spyware package "Pegasus". Despite NSO's claims that they "[evaluate] the potential for adverse human
rights impacts arising from the misuse of NSO products" Pegasus has been linked to the hacking of the New
York Times journalist Ben Hubbard by the Saudi regime, hacking of human rights defenders in Morocco and
Bahrain, the targeting of Amnesty International staff and dozens of other cases.

Last month the United States added NSO to the "Entity List", severely restricting the ability of US companies
to do business with NSO and stating in a press release that "[NSO's tools] enabled foreign governments to
conduct transnational repression, which is the practice of authoritarian governments targeting dissidents,
journalists and activists outside of their sovereign borders to silence dissent."

Citizen Lab was able to recover these Pegasus exploits from an iPhone and therefore this analysis covers
NSO's capabilities against iPhone. We are aware that NSO sells similar zero-click capabilities which target
Android devices; Project Zero does not have samples of these exploits but if you do, please reach out.

From One to Zero

In previous cases such as the Million Dollar Dissident from 2016, targets were sent links in SMS messages:

Search

Search This Blog

About Project Zero

Working at Project Zero

0day "In the Wild"

0day Exploit Root Cause Analyses
Vulnerability Disclosure FAQ

Pages

2021
A deep dive into an NSO zero-click

iMessage exploi... (Dec)

This shouldn't have
happened: A vulnerability post...
(Dec)

Windows Exploitation Tricks:
Relaying DCOM Authent... (Oct)

Using Kerberos for Authentication
Relay Attacks (Oct)

How a simple Linux kernel memory
corruption bug ca... (Oct)

Fuzzing Closed-Source JavaScript
Engines with Cove... (Sep)

Understanding Network Access in
Windows AppContainers (Aug)

An EPYC escape: Case-study of a
KVM breakout (Jun)

Fuzzing iOS code on macOS at
native speed (May)

Designing sockfuzzer, a network
syscall fuzzer for... (Apr)

Policy and Disclosure: 2021 Edition
(Apr)

Who Contains the Containers?
(Apr)

In-the-Wild Series: October 2020
0-day discovery (Mar)

Déjà vu-lnerability (Feb)

A Look at iMessage in iOS 14
(Jan)

Windows Exploitation Tricks:
Trapping Virtual Memo... (Jan)

The State of State Machines (Jan)

Hunting for Bugs in Windows Mini-
Filter Drivers (Jan)

In-the-Wild Series: Android Post-
Exploitation (Jan)

In-the-Wild Series: Windows
Exploits (Jan)

In-the-Wild Series: Android
Exploits (Jan)

Archives

More

https://googleprojectzero.blogspot.com/
https://support.apple.com/en-us/HT212807
https://en.wikipedia.org/wiki/NSO_Group
https://en.wikipedia.org/wiki/NSO_Group
https://www.atlanticcouncil.org/in-depth-research-reports/report/countering-cyber-proliferation-zeroing-in-on-access-as-a-service/
https://www.atlanticcouncil.org/in-depth-research-reports/issue-brief/surveillance-technology-at-the-fair/
https://www.nsogroup.com/governance/human-rights-policy/
https://citizenlab.ca/2020/01/stopping-the-press-new-york-times-journalist-targeted-by-saudi-linked-pegasus-spyware-operator/
https://www.amnesty.org/en/latest/research/2019/10/morocco-human-rights-defenders-targeted-with-nso-groups-spyware/
https://citizenlab.ca/2021/08/bahrain-hacks-activists-with-nso-group-zero-click-iphone-exploits/
https://www.amnesty.org/en/latest/research/2018/08/amnesty-international-among-targets-of-nso-powered-campaign/
https://www.commerce.gov/news/press-releases/2021/11/commerce-adds-nso-group-and-other-foreign-companies-entity-list
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://googleprojectzero.blogspot.com/p/about-project-zero.html
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.github.io/0days-in-the-wild/rca.html
https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-faq.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2021/12/this-shouldnt-have-happened.html
https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://googleprojectzero.blogspot.com/2021/10/using-kerberos-for-authentication-relay.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/09/fuzzing-closed-source-javascript.html
https://googleprojectzero.blogspot.com/2021/08/understanding-network-access-windows-app.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://googleprojectzero.blogspot.com/2021/05/fuzzing-ios-code-on-macos-at-native.html
https://googleprojectzero.blogspot.com/2021/04/designing-sockfuzzer-network-syscall.html
https://googleprojectzero.blogspot.com/2021/04/policy-and-disclosure-2021-edition.html
https://googleprojectzero.blogspot.com/2021/04/who-contains-containers.html
https://googleprojectzero.blogspot.com/2021/03/in-wild-series-october-2020-0-day.html
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/the-state-of-state-machines.html
https://googleprojectzero.blogspot.com/2021/01/hunting-for-bugs-in-windows-mini-filter.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-post-exploitation.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-exploits.html
https://www.blogger.com/

Screenshots of Phishing SMSs reported to Citizen Lab in 2016
source: https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/

The target was only hacked when they clicked the link, a technique known as a one-click exploit. Recently,
however, it has been documented that NSO is offering their clients zero-click exploitation technology, where
even very technically savvy targets who might not click a phishing link are completely unaware they are
being targeted. In the zero-click scenario no user interaction is required. Meaning, the attacker doesn't need
to send phishing messages; the exploit just works silently in the background. Short of not using a device,
there is no way to prevent exploitation by a zero-click exploit; it's a weapon against which there is no
defense.

One weird trick

The initial entry point for Pegasus on iPhone is iMessage. This means that a victim can be targeted just
using their phone number or AppleID username.

iMessage has native support for GIF images, the typically small and low quality animated images popular in
meme culture. You can send and receive GIFs in iMessage chats and they show up in the chat window.
Apple wanted to make those GIFs loop endlessly rather than only play once, so very early on in the
iMessage parsing and processing pipeline (after a message has been received but well before the message
is shown), iMessage calls the following method in the IMTranscoderAgent process (outside the
"BlastDoor" sandbox), passing any image file received with the extension .gif:

 [IMGIFUtils copyGifFromPath:toDestinationPath:error]

Looking at the selector name, the intention here was probably to just copy the GIF file before editing the loop
count field, but the semantics of this method are different. Under the hood it uses the CoreGraphics APIs to
render the source image to a new GIF file at the destination path. And just because the source filename has
to end in .gif, that doesn't mean it's really a GIF file.

The ImageIO library, as detailed in a previous Project Zero blogpost, is used to guess the correct format of
the source file and parse it, completely ignoring the file extension. Using this "fake gif" trick, over 20 image
codecs are suddenly part of the iMessage zero-click attack surface, including some very obscure and
complex formats, remotely exposing probably hundreds of thousands of lines of code.

Note: Apple inform us that they have restricted the available ImageIO formats reachable from
IMTranscoderAgent starting in iOS 14.8.1 (26 October 2021), and completely removed the GIF code path
from IMTranscoderAgent starting in iOS 15.0 (20 September 2021), with GIF decoding taking place entirely
within BlastDoor.

A PDF in your GIF

NSO uses the "fake gif" trick to target a vulnerability in the CoreGraphics PDF parser.

PDF was a popular target for exploitation around a decade ago, due to its ubiquity and complexity. Plus, the
availability of javascript inside PDFs made development of reliable exploits far easier. The CoreGraphics
PDF parser doesn't seem to interpret javascript, but NSO managed to find something equally powerful inside
the CoreGraphics PDF parser...

Extreme compression

In the late 1990's, bandwidth and storage were much more scarce than they are now. It was in that
environment that the JBIG2 standard emerged. JBIG2 is a domain specific image codec designed to
compress images where pixels can only be black or white.

It was developed to achieve extremely high compression ratios for scans of text documents and was
implemented and used in high-end office scanner/printer devices like the XEROX WorkCenter device shown
below. If you used the scan to pdf functionality of a device like this a decade ago, your PDF likely had a
JBIG2 stream in it.

In-the-Wild Series: Chrome Infinity
Bug (Jan)

In-the-Wild Series: Chrome
Exploits (Jan)

Introducing the In-the-Wild Series
(Jan)

2020
An iOS hacker tries Android (Dec)

An iOS zero-click radio proximity
exploit odyssey (Dec)

Oops, I missed it again! (Nov)

Enter the Vault: Authentication
Issues in HashiCor... (Oct)

Announcing the Fuzzilli Research
Grant Program (Oct)

Attacking the Qualcomm Adreno
GPU (Sep)

JITSploitation I: A JIT Bug (Sep)

JITSploitation II: Getting
Read/Write (Sep)

JITSploitation III: Subverting
Control Flow (Sep)

MMS Exploit Part 5: Defeating
Android ASLR, Gettin... (Aug)

Exploiting Android Messengers
with WebRTC: Part 3 (Aug)

Exploiting Android Messengers
with WebRTC: Part 2 (Aug)

MMS Exploit Part 4: MMS Primer,
Completing the ASL... (Aug)

Exploiting Android Messengers
with WebRTC: Part 1 (Aug)

The core of Apple is PPL: Breaking
the XNU kernel'... (Jul)

One Byte to rule them all (Jul)

Root Cause Analyses for 0-day In-
the-Wild Exploits (Jul)

Detection Deficit: A Year in Review
of 0-days Used... (Jul)

MMS Exploit Part 3: Constructing
the Memory Corrup... (Jul)

MMS Exploit Part 2: Effective
Fuzzing of the Qmage... (Jul)

MMS Exploit Part 1: Introduction to
the Samsung Qm... (Jul)

How to unc0ver a 0-day in 4 hours
or less (Jul)

FF Sandbox Escape (CVE-2020-
12388) (Jun)

A survey of recent iOS kernel
exploits (Jun)

Fuzzing ImageIO (Apr)

You Won't Believe what this
One Line Change Did to... (Apr)

TFW you-get-really-excited-you-
patch-diffed-a-0day... (Apr)

Escaping the Chrome Sandbox
with RIDL (Feb)

Mitigations are attack surface, too
(Feb)

A day^W^W Several months in the
life of Project Ze... (Feb)

A day^W^W Several months in the
life of Project Ze... (Feb)

Part II: Returning to Adobe Reader
symbols on macOS (Jan)

https://blogger.googleusercontent.com/img/a/AVvXsEgzqxpl0250IinIsgxGQRKF09QzU4pN0h8WvRtZQYaHjJmJ1MrGLh1wnEbaPBhSYHLgWezIfk6MOaGphBO3PRGX432k2dxcknktEErH4fW50f8MFzbqlMG-JdpGcSJw8NjMmTTAgKkBuCHku2Y06rQOS2mRI8voqyzI51OVlbBWA7CwtdFj4Sd50cMo7A=s870
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://googleprojectzero.blogspot.com/2021/01/a-look-at-imessage-in-ios-14.html
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
https://en.wikipedia.org/wiki/JBIG2
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-exploits.html
https://googleprojectzero.blogspot.com/2021/01/introducing-in-wild-series.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/11/oops-i-missed-it-again.html
https://googleprojectzero.blogspot.com/2020/10/enter-the-vault-auth-issues-hashicorp-vault.html
https://googleprojectzero.blogspot.com/2020/10/announcing-fuzzilli-research-grant.html
https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://googleprojectzero.blogspot.com/2020/08/mms-exploit-part-5-defeating-aslr-getting-rce.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-3.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-2.html
https://googleprojectzero.blogspot.com/2020/08/mms-exploit-part-4-completing-aslr-oracle.html
https://googleprojectzero.blogspot.com/2020/08/exploiting-android-messengers-part-1.html
https://googleprojectzero.blogspot.com/2020/07/the-core-of-apple-is-ppl-breaking-xnu.html
https://googleprojectzero.blogspot.com/2020/07/one-byte-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2020/07/root-cause-analyses-for-0-day-in-wild.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-3-constructing-primitives.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/how-to-unc0ver-0-day-in-4-hours-or-less.html
https://googleprojectzero.blogspot.com/2020/06/ff-sandbox-escape-cve-2020-12388.html
https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
https://googleprojectzero.blogspot.com/2020/04/you-wont-believe-what-this-one-line.html
https://googleprojectzero.blogspot.com/2020/04/tfw-you-get-really-excited-you-patch.html
https://googleprojectzero.blogspot.com/2020/02/escaping-chrome-sandbox-with-ridl.html
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part2.html
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part1.html
https://googleprojectzero.blogspot.com/2020/01/part-ii-returning-to-adobe-reader.html

A Xerox WorkCentre 7500 series multifunction printer, which used JBIG2
for its scan-to-pdf functionality

source: https://www.office.xerox.com/en-us/multifunction-printers/workcentre-7545-7556/specifications

The PDFs files produced by those scanners were exceptionally small, perhaps only a few kilobytes. There
are two novel techniques which JBIG2 uses to achieve these extreme compression ratios which are relevant
to this exploit:

Technique 1: Segmentation and substitution

Effectively every text document, especially those written in languages with small alphabets like English or
German, consists of many repeated letters (also known as glyphs) on each page. JBIG2 tries to segment
each page into glyphs then uses simple pattern matching to match up glyphs which look the same:

Simple pattern matching can find all the shapes which look similar on a page,
in this case all the 'e's

JBIG2 doesn't actually know anything about glyphs and it isn't doing OCR (optical character recognition.) A
JBIG encoder is just looking for connected regions of pixels and grouping similar looking regions together.
The compression algorithm is to simply substitute all sufficiently-similar looking regions with a copy of just
one of them:

Remote iPhone Exploitation Part 3:
From Memory Cor... (Jan)

Remote iPhone Exploitation Part 2:
Bringing Light ... (Jan)

Remote iPhone Exploitation Part 1:
Poking Memory v... (Jan)

Policy and Disclosure: 2020 Edition
(Jan)

2019
Calling Local Windows RPC

Servers from .NET (Dec)

SockPuppet: A Walkthrough of a
Kernel Exploit for ... (Dec)

Bad Binder: Android In-The-Wild
Exploit (Nov)

KTRW: The journey to build a
debuggable iPhone (Oct)

The story of Adobe Reader
symbols (Oct)

Windows Exploitation Tricks:
 Spoofing Name... (Sep)

A very deep dive into iOS Exploit
chains found in ... (Aug)

In-the-wild iOS Exploit Chain 1
(Aug)

In-the-wild iOS Exploit Chain 2
(Aug)

In-the-wild iOS Exploit Chain 3
(Aug)

In-the-wild iOS Exploit Chain 4
(Aug)

In-the-wild iOS Exploit Chain 5
(Aug)

Implant Teardown (Aug)

JSC Exploits (Aug)

The Many Possibilities of CVE-
2019-8646 (Aug)

Down the Rabbit-Hole... (Aug)

The Fully Remote Attack Surface
of the iPhone (Aug)

Trashing the Flow of Data (May)

Windows Exploitation Tricks:
Abusing the User-Mode... (Apr)

Virtually Unlimited Memory:
Escaping the Chrome Sa... (Apr)

Splitting atoms in XNU (Apr)

Windows Kernel Logic Bug Class:
Access Mode Mismat... (Mar)

Android Messaging: A Few Bugs
Short of a Chain (Mar)

The Curious Case of Convexity
Confusion (Feb)

Examining Pointer Authentication
on the iPhone XS (Feb)

voucher_swap: Exploiting MIG
reference counting in... (Jan)

Taking a page from the
kernel's book: A TLB issue ...
(Jan)

2018
On VBScript (Dec)

Searching statically-linked
vulnerable library fun... (Dec)

Adventures in Video Conferencing
Part 5: Where Do ... (Dec)

https://blogger.googleusercontent.com/img/a/AVvXsEjWZdMTUZfcCmxvlf99Hl9jE1A8OcfR-sD3kZR8xpOpwh05MFzQCfcDFIgLxDV_KalZHhqUIxKJ-YCHMSG3PGzPQq-FQYt3PhbycGxxqzljUCllSuZQsT4CEri977oV9jiS3pdCmu4Dmj3uzdEU2RlZgol--aaAdapWwid0C3xxo-kNhjdZs91-6WWLQQ=s700
https://www.office.xerox.com/en-us/multifunction-printers/workcentre-7545-7556/specifications
https://blogger.googleusercontent.com/img/a/AVvXsEh6iNZLjmFtsjnVl7fWtG-Kq-TEw3azo1lwXKtyz-TNDRRQclfYG7p2tsSIoKJOKfhsBqSRDbJZ6gWH9K_7HeDpziuugHYegXG4Va111UEsCuBquBwf2BarcQIYFymNUlYS9d7YWHaSCLOO3BreLN6BT2V_Wj7flT9TjkpjaM_XtADdhrRN4Jy5b5qT_Q=s352
https://blogger.googleusercontent.com/img/a/AVvXsEgxM5VTCT6dKeMRITKT6kQDsQue8Py7eRGUYA045MkuaO9VagUeisKMa195020OTUHVSpDpI39qm8v5ZNG54OLNHwEfmuskR13PiIKAAAyBpoW0KnW2G3rncfSO4LC_b5zxDVTW0heCEaXEW95UHfwM7LZ2il-tonGDRHc6BQDhJ1rsYgRg_VbwSBefvQ=s327
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/policy-and-disclosure-2020-edition.html
https://googleprojectzero.blogspot.com/2019/12/calling-local-windows-rpc-servers-from.html
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/10/ktrw-journey-to-build-debuggable-iphone.html
https://googleprojectzero.blogspot.com/2019/10/the-story-of-adobe-reader-symbols.html
https://googleprojectzero.blogspot.com/2019/09/windows-exploitation-tricks-spoofing.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-2.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-3.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-5.html
https://googleprojectzero.blogspot.com/2019/08/implant-teardown.html
https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2019/08/down-rabbit-hole.html
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/05/trashing-flow-of-data.html
https://googleprojectzero.blogspot.com/2019/04/windows-exploitation-tricks-abusing.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html
https://googleprojectzero.blogspot.com/2019/03/windows-kernel-logic-bug-class-access.html
https://googleprojectzero.blogspot.com/2019/03/android-messaging-few-bugs-short-of.html
https://googleprojectzero.blogspot.com/2019/02/the-curious-case-of-convexity-confusion.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/01/voucherswap-exploiting-mig-reference.html
https://googleprojectzero.blogspot.com/2019/01/taking-page-from-kernels-book-tlb-issue.html
https://googleprojectzero.blogspot.com/2018/12/on-vbscript.html
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-5.html

Replacing all occurrences of similar glyphs with a copy of just one often yields a document which is still quite
legible and enables very high compression ratios

In this case the output is perfectly readable but the amount of information to be stored is significantly
reduced. Rather than needing to store all the original pixel information for the whole page you only need a
compressed version of the "reference glyph" for each character and the relative coordinates of all the places
where copies should be made. The decompression algorithm then treats the output page like a canvas and
"draws" the exact same glyph at all the stored locations.

There's a significant issue with such a scheme: it's far too easy for a poor encoder to accidentally swap
similar looking characters, and this can happen with interesting consequences. D. Kriesel's blog has some
motivating examples where PDFs of scanned invoices have different figures or PDFs of scanned
construction drawings end up with incorrect measurements. These aren't the issues we're looking at, but
they are one significant reason why JBIG2 is not a common compression format anymore.

Technique 2: Refinement coding

As mentioned above, the substitution based compression output is lossy. After a round of compression and
decompression the rendered output doesn't look exactly like the input. But JBIG2 also supports lossless
compression as well as an intermediate "less lossy" compression mode.

It does this by also storing (and compressing) the difference between the substituted glyph and each original
glyph. Here's an example showing a difference mask between a substituted character on the left and the
original lossless character in the middle:

Using the XOR operator on bitmaps to compute a difference image

In this simple example the encoder can store the difference mask shown on the right, then during
decompression the difference mask can be XORed with the substituted character to recover the exact pixels
making up the original character. There are some more tricks outside of the scope of this blog post to further
compress that difference mask using the intermediate forms of the substituted character as a "context" for
the compression.

Rather than completely encoding the entire difference in one go, it can be done in steps, with each iteration
using a logical operator (one of AND, OR, XOR or XNOR) to set, clear or flip bits. Each successive
refinement step brings the rendered output closer to the original and this allows a level of control over the
"lossiness" of the compression. The implementation of these refinement coding steps is very flexible and
they are also able to "read" values already present on the output canvas.

A JBIG2 stream

Most of the CoreGraphics PDF decoder appears to be Apple proprietary code, but the JBIG2 implementation
is from Xpdf, the source code for which is freely available.

The JBIG2 format is a series of segments, which can be thought of as a series of drawing commands which
are executed sequentially in a single pass. The CoreGraphics JBIG2 parser supports 19 different segment
types which include operations like defining a new page, decoding a huffman table or rendering a bitmap to
given coordinates on the page.

Segments are represented by the class JBIG2Segment and its subclasses JBIG2Bitmap and
JBIG2SymbolDict.

A JBIG2Bitmap represents a rectangular array of pixels. Its data field points to a backing-buffer containing
the rendering canvas.

A JBIG2SymbolDict groups JBIG2Bitmaps together. The destination page is represented as a
JBIG2Bitmap, as are individual glyphs.

JBIG2Segments can be referred to by a segment number and the GList vector type stores pointers to all
the JBIG2Segments. To look up a segment by segment number the GList is scanned sequentially.

The vulnerability

The vulnerability is a classic integer overflow when collating referenced segments:

 Guint numSyms; // (1)

 numSyms = 0;

Adventures in Video Conferencing
Part 4: What Didn... (Dec)

Adventures in Video Conferencing
Part 3: The Even ... (Dec)

Adventures in Video Conferencing
Part 2: Fun with ... (Dec)

Adventures in Video Conferencing
Part 1: The Wild ... (Dec)

Injecting Code into Windows
Protected Processes us... (Nov)

Heap Feng Shader: Exploiting
SwiftShader in Chrome (Oct)

Deja-XNU (Oct)

Injecting Code into Windows
Protected Processes us... (Oct)

365 Days Later: Finding and
Exploiting Safari Bugs... (Oct)

A cache invalidation bug in Linux
memory management (Sep)

OATmeal on the Universal Cereal
Bus: Exploiting An... (Sep)

The Problems and Promise of
WebAssembly (Aug)

Windows Exploitation Tricks:
Exploiting Arbitrary ... (Aug)

Adventures in vulnerability
reporting (Aug)

Drawing Outside the Box:
Precision Issues in Graph... (Jul)

Detecting Kernel Memory
Disclosure – Whitepaper (Jun)

Bypassing Mitigations by Attacking
JIT Server in M... (May)

Windows Exploitation Tricks:
Exploiting Arbitrary ... (Apr)

Reading privileged memory with a
side-channel (Jan)

2017
aPAColypse now: Exploiting

Windows 10 in a Local N... (Dec)

Over The Air - Vol. 2, Pt. 3:
Exploiting The Wi-Fi... (Oct)

Using Binary Diffing to Discover
Windows Kernel Me... (Oct)

Over The Air - Vol. 2, Pt. 2:
Exploiting The Wi-Fi... (Oct)

Over The Air - Vol. 2, Pt. 1:
Exploiting The Wi-Fi... (Sep)

The Great DOM Fuzz-off of 2017
(Sep)

Bypassing VirtualBox Process
Hardening on Windows (Aug)

Windows Exploitation Tricks:
Arbitrary Directory C... (Aug)

Trust Issues: Exploiting TrustZone
TEEs (Jul)

Exploiting the Linux kernel via
packet sockets (May)

Exploiting .NET Managed DCOM
(Apr)

Exception-oriented exploitation on
iOS (Apr)

Over The Air: Exploiting
Broadcom’s Wi-Fi Stack (P... (Apr)

Notes on Windows Uniscribe
Fuzzing (Apr)

http://www.dkriesel.com/en/blog/2013/0802_xerox-workcentres_are_switching_written_numbers_when_scanning
https://blogger.googleusercontent.com/img/a/AVvXsEiJn4fCqItjd3bgJ_re3nMHB4aFgaR-17H6lGyPUDTdtmFAIO59Pg8WDxIYjBu_9cAFL_7fLp47YQBCzw5xiv-PdevPiJ0lyYdSvyMXrgpm45vnOtGrhjFgvRKoeVe9T8iIdZaHXFc8plsJm5QFYUop4cfcqklaYmr62HjOze-ZbA2GB4HGmXflhyF9_A=s267
https://www.xpdfreader.com/download.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-4.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-2.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/10/heap-feng-shader-exploiting-swiftshader.html
https://googleprojectzero.blogspot.com/2018/10/deja-xnu.html
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-windows-protected.html
https://googleprojectzero.blogspot.com/2018/10/365-days-later-finding-and-exploiting.html
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://googleprojectzero.blogspot.com/2018/09/oatmeal-on-universal-cereal-bus.html
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://googleprojectzero.blogspot.com/2018/08/windows-exploitation-tricks-exploiting.html
https://googleprojectzero.blogspot.com/2018/08/adventures-in-vulnerability-reporting.html
https://googleprojectzero.blogspot.com/2018/07/drawing-outside-box-precision-issues-in.html
https://googleprojectzero.blogspot.com/2018/06/detecting-kernel-memory-disclosure.html
https://googleprojectzero.blogspot.com/2018/05/bypassing-mitigations-by-attacking-jit.html
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-10-in_18.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/using-binary-diffing-to-discover.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2017/08/bypassing-virtualbox-process-hardening.html
https://googleprojectzero.blogspot.com/2017/08/windows-exploitation-tricks-arbitrary.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/04/exploiting-net-managed-dcom.html
https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/notes-on-windows-uniscribe-fuzzing.html

 for (i = 0; i < nRefSegs; ++i) {

 if ((seg = findSegment(refSegs[i]))) {

 if (seg->getType() == jbig2SegSymbolDict) {

 numSyms += ((JBIG2SymbolDict *)seg)->getSize(); // (2)

 } else if (seg->getType() == jbig2SegCodeTable) {

 codeTables->append(seg);

 }

 } else {

 error(errSyntaxError, getPos(),

 "Invalid segment reference in JBIG2 text region");

 delete codeTables;

 return;

 }

 }

...

 // get the symbol bitmaps

 syms = (JBIG2Bitmap **)gmallocn(numSyms, sizeof(JBIG2Bitmap *)); //

(3)

 kk = 0;

 for (i = 0; i < nRefSegs; ++i) {

 if ((seg = findSegment(refSegs[i]))) {

 if (seg->getType() == jbig2SegSymbolDict) {

 symbolDict = (JBIG2SymbolDict *)seg;

 for (k = 0; k < symbolDict->getSize(); ++k) {

 syms[kk++] = symbolDict->getBitmap(k); // (4)

 }

 }

 }
 }

numSyms is a 32-bit integer declared at (1). By supplying carefully crafted reference segments it's possible
for the repeated addition at (2) to cause numSyms to overflow to a controlled, small value.

That smaller value is used for the heap allocation size at (3) meaning syms points to an undersized buffer.

Inside the inner-most loop at (4) JBIG2Bitmap pointer values are written into the undersized syms buffer.

Without another trick this loop would write over 32GB of data into the undersized syms buffer, certainly
causing a crash. To avoid that crash the heap is groomed such that the first few writes off of the end of the
syms buffer corrupt the GList backing buffer. This GList stores all known segments and is used by the
findSegments routine to map from the segment numbers passed in refSegs to JBIG2Segment pointers.
The overflow causes the JBIG2Segment pointers in the GList to be overwritten with JBIG2Bitmap pointers
at (4).

Conveniently since JBIG2Bitmap inherits from JBIG2Segment the seg->getType() virtual call succeed
even on devices where Pointer Authentication is enabled (which is used to perform a weak type check on
virtual calls) but the returned type will now not be equal to jbig2SegSymbolDict thus causing further
writes at (4) to not be reached and bounding the extent of the memory corruption.

A simplified view of the memory layout when the heap overflow occurs showing the undersized-buffer below
the GList backing buffer and the JBIG2Bitmap

Pandavirtualization: Exploiting the
Xen hypervisor (Apr)

Over The Air: Exploiting
Broadcom’s Wi-Fi Stack (P... (Apr)

Project Zero Prize Conclusion
(Mar)

Attacking the Windows NVIDIA
Driver (Feb)

Lifting the (Hyper) Visor: Bypassing
Samsung’s Rea... (Feb)

2016
Chrome OS exploit: one byte

overflow and symlinks (Dec)

BitUnmap: Attacking Android
Ashmem (Dec)

Breaking the Chain (Nov)

task_t considered harmful (Oct)

Announcing the Project Zero Prize
(Sep)

Return to libstagefright: exploiting
libutils on A... (Sep)

A Shadow of our Former Self (Aug)

A year of Windows kernel font
fuzzing #2: the tech... (Jul)

How to Compromise the Enterprise
Endpoint (Jun)

A year of Windows kernel font
fuzzing #1: the results (Jun)

Exploiting Recursion in the Linux
Kernel (Jun)

Life After the Isolated Heap (Mar)

Race you to the kernel! (Mar)

Exploiting a Leaked Thread Handle
(Mar)

The Definitive Guide on Win32 to
NT Path Conversion (Feb)

Racing MIDI messages in Chrome
(Feb)

Raising the Dead (Jan)

2015
FireEye Exploitation: Project Zero’s

Vulnerability... (Dec)

Between a Rock and a Hard Link
(Dec)

Windows Sandbox Attack Surface
Analysis (Nov)

Hack The Galaxy: Hunting Bugs in
the Samsung Galax... (Nov)

Windows Drivers are True’ly Tricky
(Oct)

Revisiting Apple IPC: (1)
Distributed Objects (Sep)

Kaspersky: Mo Unpackers, Mo
Problems. (Sep)

Stagefrightened? (Sep)

Enabling QR codes in Internet
Explorer, or a story... (Sep)

Windows 10^H^H Symbolic Link
Mitigations (Aug)

One font vulnerability to rule them
all #4: Window... (Aug)

Three bypasses and a fix for one of
Flash's Vector... (Aug)

Attacking ECMAScript Engines
with Redefinition (Aug)

https://blogger.googleusercontent.com/img/a/AVvXsEh3sDkZw8L9bJowGRjXcR-k0Qqwi_CaHYh7HxeTySEvC7PgxPJ1HUdjkvOaAqN_knp5kWl710qlryXstIc9c5eHqUMNP2DcCBqLkV_vHHsxbYb34TlIHmn7rrG-PQTQMlqPhRrO3M65lJoWsQyLpeGiW6QeFKkKc_ZJvw-eTvWwGUziGjd-MYH9kYmE4g=s506
https://googleprojectzero.blogspot.com/2017/04/pandavirtualization-exploiting-xen.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/03/project-zero-prize-conclusion.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/bitunmap-attacking-android-ashmem.html
https://googleprojectzero.blogspot.com/2016/11/breaking-chain.html
https://googleprojectzero.blogspot.com/2016/10/taskt-considered-harmful.html
https://googleprojectzero.blogspot.com/2016/09/announcing-project-zero-prize.html
https://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html
https://googleprojectzero.blogspot.com/2016/08/a-shadow-of-our-former-self.html
https://googleprojectzero.blogspot.com/2016/07/a-year-of-windows-kernel-font-fuzzing-2.html
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://googleprojectzero.blogspot.com/2016/06/a-year-of-windows-kernel-font-fuzzing-1_27.html
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://googleprojectzero.blogspot.com/2016/03/life-after-isolated-heap.html
https://googleprojectzero.blogspot.com/2016/03/race-you-to-kernel.html
https://googleprojectzero.blogspot.com/2016/03/exploiting-leaked-thread-handle.html
https://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
https://googleprojectzero.blogspot.com/2016/02/racing-midi-messages-in-chrome.html
https://googleprojectzero.blogspot.com/2016/01/raising-dead.html
https://googleprojectzero.blogspot.com/2015/12/fireeye-exploitation-project-zeros.html
https://googleprojectzero.blogspot.com/2015/12/between-rock-and-hard-link.html
https://googleprojectzero.blogspot.com/2015/11/windows-sandbox-attack-surface-analysis.html
https://googleprojectzero.blogspot.com/2015/11/hack-galaxy-hunting-bugs-in-samsung.html
https://googleprojectzero.blogspot.com/2015/10/windows-drivers-are-truely-tricky.html
https://googleprojectzero.blogspot.com/2015/09/revisiting-apple-ipc-1-distributed_28.html
https://googleprojectzero.blogspot.com/2015/09/kaspersky-mo-unpackers-mo-problems.html
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://googleprojectzero.blogspot.com/2015/09/enabling-qr-codes-in-internet-explorer.html
https://googleprojectzero.blogspot.com/2015/08/windows-10hh-symbolic-link-mitigations.html
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all_21.html
https://googleprojectzero.blogspot.com/2015/08/three-bypasses-and-fix-for-one-of.html
https://googleprojectzero.blogspot.com/2015/08/attacking-ecmascript-engines-with.html

Boundless unbounding

Directly after the corrupted segments GList, the attacker grooms the JBIG2Bitmap object which
represents the current page (the place to where current drawing commands render).

JBIG2Bitmaps are simple wrappers around a backing buffer, storing the buffer’s width and height (in bits)
as well as a line value which defines how many bytes are stored for each line.

The memory layout of the JBIG2Bitmap object showing the segnum, w, h and line fields which are corrupted
during the overflow

By carefully structuring refSegs they can stop the overflow after writing exactly three more
JBIG2Bitmap pointers after the end of the segments GList buffer. This overwrites the vtable pointer and
the first four fields of the JBIG2Bitmap representing the current page. Due to the nature of the iOS address
space layout these pointers are very likely to be in the second 4GB of virtual memory, with addresses
between 0x100000000 and 0x1ffffffff. Since all iOS hardware is little endian (meaning that the w and
line fields are likely to be overwritten with 0x1 — the most-significant half of a JBIG2Bitmap pointer) and
the segNum and h fields are likely to be overwritten with the least-significant half of such a pointer, a fairly
random value depending on heap layout and ASLR somewhere between 0x100000 and 0xffffffff.

This gives the current destination page JBIG2Bitmap an unknown, but very large, value for h. Since that
h value is used for bounds checking and is supposed to reflect the allocated size of the page backing buffer,
this has the effect of "unbounding" the drawing canvas. This means that subsequent JBIG2 segment
commands can read and write memory outside of the original bounds of the page backing buffer.

The heap groom also places the current page's backing buffer just below the undersized syms buffer, such
that when the page JBIG2Bitmap is unbounded, it's able to read and write its own fields:

One font vulnerability to rule them
all #3: Window... (Aug)

One font vulnerability to rule them
all #2: Adobe ... (Aug)

One font vulnerability to rule them
all #1: Introd... (Jul)

One Perfect Bug: Exploiting Type
Confusion in Flash (Jul)

Significant Flash exploit mitigations
are live in ... (Jul)

From inter to intra: gaining
reliability (Jul)

When ‘int’ is the new ‘short’ (Jul)

What is a "good"
memory corruption vulnerability?
(Jun)

Analysis and Exploitation of an
ESET Vulnerability (Jun)

Owning Internet Printing - A Case
Study in Modern ... (Jun)

Dude, where’s my heap? (Jun)

In-Console-Able (May)

A Tale of Two Exploits (Apr)

Taming the wild copy: Parallel
Thread Corruption (Mar)

Exploiting the DRAM rowhammer
bug to gain kernel p... (Mar)

Feedback and data-driven updates
to Google’s discl... (Feb)

(^Exploiting)\s*(CVE-2015-0318)\s*
(in)\s*(Flash$) (Feb)

A Token’s Tale (Feb)

Exploiting NVMAP to escape the
Chrome sandbox - CV... (Jan)

Finding and exploiting ntpd
vulnerabilities (Jan)

2014
Internet Explorer EPM Sandbox

Escape CVE-2014-6350 (Dec)

pwn4fun Spring 2014 - Safari - Part
II (Nov)

Project Zero Patch Tuesday
roundup, November 2014 (Nov)

Did the “Man With No Name” Feel
Insecure? (Oct)

More Mac OS X and iPhone
sandbox escapes and kerne... (Oct)

Exploiting CVE-2014-0556 in Flash
(Sep)

The poisoned NUL byte, 2014
edition (Aug)

What does a pointer look like,
anyway? (Aug)

Mac OS X and iPhone sandbox
escapes (Jul)

pwn4fun Spring 2014 - Safari - Part
I (Jul)

Announcing Project Zero (Jul)

https://blogger.googleusercontent.com/img/a/AVvXsEjHv6_8ljNUlXsWATAbHBQPMakyH1pc3E3izqeWUjKkBnnsitW5qfX01VHl_N0sjLNgvEY0TK2H042i8L5CFybmzGlaIxiBxRH6MF4oF0jdh-cSgqan7hc5Tvq3aGgSu2m5YhFs3CG9R9vssV8weFDW5clYy38wDo7xGzrbyhVdRJ9iUPDhP0JctCLbGg=s1070
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all_13.html
https://googleprojectzero.blogspot.com/2015/08/one-font-vulnerability-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2015/07/one-font-vulnerability-to-rule-them-all.html
https://googleprojectzero.blogspot.com/2015/07/one-perfect-bug-exploiting-type_20.html
https://googleprojectzero.blogspot.com/2015/07/significant-flash-exploit-mitigations_16.html
https://googleprojectzero.blogspot.com/2015/07/from-inter-to-intra-gaining-reliability_10.html
https://googleprojectzero.blogspot.com/2015/07/when-int-is-new-short.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/analysis-and-exploitation-of-eset.html
https://googleprojectzero.blogspot.com/2015/06/owning-internet-printing-case-study-in.html
https://googleprojectzero.blogspot.com/2015/06/dude-wheres-my-heap.html
https://googleprojectzero.blogspot.com/2015/05/in-console-able.html
https://googleprojectzero.blogspot.com/2015/04/a-tale-of-two-exploits.html
https://googleprojectzero.blogspot.com/2015/03/taming-wild-copy-parallel-thread.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/02/feedback-and-data-driven-updates-to.html
https://googleprojectzero.blogspot.com/2015/02/exploitingscve-2015-0318sinsflash.html
https://googleprojectzero.blogspot.com/2015/02/a-tokens-tale_9.html
https://googleprojectzero.blogspot.com/2015/01/exploiting-nvmap-to-escape-chrome.html
https://googleprojectzero.blogspot.com/2015/01/finding-and-exploiting-ntpd.html
https://googleprojectzero.blogspot.com/2014/12/internet-explorer-epm-sandbox-escape.html
https://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html
https://googleprojectzero.blogspot.com/2014/11/project-zero-patch-tuesday-roundup.html
https://googleprojectzero.blogspot.com/2014/10/did-man-with-no-name-feel-insecure.html
https://googleprojectzero.blogspot.com/2014/10/more-mac-os-x-and-iphone-sandbox.html
https://googleprojectzero.blogspot.com/2014/09/exploiting-cve-2014-0556-in-flash.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/what-does-pointer-look-like-anyway.html
https://googleprojectzero.blogspot.com/2014/07/mac-os-x-and-iphone-sandbox-escapes.html
https://googleprojectzero.blogspot.com/2014/07/pwn4fun-spring-2014-safari-part-i_24.html
https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html

The memory layout showing how the unbounded bitmap backing buffer is able to reference the JBIG2Bitmap
object and modify fields in it as it is located after the backing buffer in memory

By rendering 4-byte bitmaps at the correct canvas coordinates they can write to all the fields of the page
JBIG2Bitmap and by carefully choosing new values for w, h and line, they can write to arbitrary offsets
from the page backing buffer.

At this point it would also be possible to write to arbitrary absolute memory addresses if you knew their
offsets from the page backing buffer. But how to compute those offsets? Thus far, this exploit has proceeded
in a manner very similar to a "canonical" scripting language exploit which in Javascript might end up with an
unbounded ArrayBuffer object with access to memory. But in those cases the attacker has the ability to run
arbitrary Javascript which can obviously be used to compute offsets and perform arbitrary computations.
How do you do that in a single-pass image parser?

My other compression format is turing-complete!

As mentioned earlier, the sequence of steps which implement JBIG2 refinement are very flexible.
Refinement steps can reference both the output bitmap and any previously created segments, as well as
render output to either the current page or a segment. By carefully crafting the context-dependent part of the
refinement decompression, it's possible to craft sequences of segments where only the refinement
combination operators have any effect.

In practice this means it is possible to apply the AND, OR, XOR and XNOR logical operators between
memory regions at arbitrary offsets from the current page's JBIG2Bitmap backing buffer. And since that has
been unbounded… it's possible to perform those logical operations on memory at arbitrary out-of-bounds
offsets:

https://blogger.googleusercontent.com/img/a/AVvXsEgkSlYnjoMsv5mHOKQARzrvGqPICZEqlS44yIYwnGbExdo9turfzNJLB0SKtg5DOYzg5JhcKkZj-5vMaq0uTI-A2MGsmBOMmCVl41SV7VChMmE2aBuK2FwxouyWBVbpQyCM4Jdark7gyKaUt9ZGdMIZGDL5ZLtnPt9BQgXyeEACXz22zH_phdfGftX5mA=s550

Posted by Ryan at 9:00 AM

The memory layout showing how logical operators can be applied out-of-bounds

It's when you take this to its most extreme form that things start to get really interesting. What if rather than
operating on glyph-sized sub-rectangles you instead operated on single bits?

You can now provide as input a sequence of JBIG2 segment commands which implement a
sequence of logical bit operations to apply to the page. And since the page buffer has been
unbounded those bit operations can operate on arbitrary memory.

With a bit of back-of-the-envelope scribbling you can convince yourself that with just the available AND, OR,
XOR and XNOR logical operators you can in fact compute any computable function - the simplest proof
being that you can create a logical NOT operator by XORing with 1 and then putting an AND gate in front of
that to form a NAND gate:

An AND gate connected to one input of an XOR gate. The other XOR gate input is connected to the constant
value 1 creating an NAND.

A NAND gate is an example of a universal logic gate; one from which all other gates can be built and from
which a circuit can be built to compute any computable function.

Practical circuits

JBIG2 doesn't have scripting capabilities, but when combined with a vulnerability, it does have the ability to
emulate circuits of arbitrary logic gates operating on arbitrary memory. So why not just use that to build your
own computer architecture and script that!? That's exactly what this exploit does. Using over 70,000
segment commands defining logical bit operations, they define a small computer architecture with features
such as registers and a full 64-bit adder and comparator which they use to search memory and perform
arithmetic operations. It's not as fast as Javascript, but it's fundamentally computationally equivalent.

The bootstrapping operations for the sandbox escape exploit are written to run on this logic circuit and the
whole thing runs in this weird, emulated environment created out of a single decompression pass through a
JBIG2 stream. It's pretty incredible, and at the same time, pretty terrifying.

In a future post (currently being finished), we'll take a look at exactly how they escape the
IMTranscoderAgent sandbox.

https://www.blogger.com/profile/17011901605865574886
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://blogger.googleusercontent.com/img/a/AVvXsEiJHLjuE1TzkQPJYrSalZ3JL9ZlBfrdmXl_P77-Iq4I3ZEYJ5Onv8c422-wUKSjOE8svNKjZSTAnj0iKgDoCBc-7WPy7nSyjvNyhk8268eX_WebfTesgjMlhCMzGA7ivBESmxpogH0mD6B03xB8rhQ6oe0dOTNKVuXm4HTDk5rlF28KRH1Q81PshK8eDg=s551
https://blogger.googleusercontent.com/img/a/AVvXsEgU2PbU_PLrLOH1W-ZuOIC0aR5iOEt3iJonIHUpsf4PxyWoyfGF3xoOMaMUtpgvGNWenhWFe4ER31RQuB4_ikNt6qnYpYmmigtRziR192B3G-qHOqza5Wjm0DnkOk9a4TJLRBegZvk8E1nSJuDelFRHrzgGEq2p_6wIts5zeBXzzuqVU8p0qlK--cscGw=s265
https://www.nand2tetris.org/
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=5073082417618502919&target=email
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=5073082417618502919&target=blog
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=5073082417618502919&target=twitter
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=5073082417618502919&target=facebook
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=5073082417618502919&target=pinterest

Older PostHome

Subscribe to: Post Comments (Atom)

Sign out

 Notify me

Comment as: jp@taurusgroup

PublishPublish PreviewPreview

Enter your comment...

No comments:

Post a Comment

Simple theme. Powered by Blogger.

https://googleprojectzero.blogspot.com/2021/12/this-shouldnt-have-happened.html
https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/feeds/5073082417618502919/comments/default
https://googleprojectzero.blogspot.com/logout?d=https://www.blogger.com/logout-redirect.g?blogID%3D4838136820032157985%26postID%3D5073082417618502919
https://www.blogger.com/profile/13627889645834868420
https://www.blogger.com/

