
Damiano Melotti
Maxime Rossi Bellom
Andrea Continella

Reversing and Fuzzing
the Google Titan M chip

Introduction - system design

Once upon a time...

2

● Kernel running in privileged mode
● Small code base

Problem: what if the kernel could be compromised?
Source: Maxime Peterlin, Joffrey Guilbon, and Alexandre Adamski. Breaking Samsung’s ARM TrustZone.
https://www.blackhat.com/us-19/briefings/schedule/#breaking-samsungs-arm-trustzone-14932, August 2019

https://www.blackhat.com/us-19/briefings/schedule/#breaking-samsungs-arm-trustzone-14932

Introduction - system design

3

● Hypervisors
○ Additional secure layer
○ Still software! VM-escapes

and other attacks

Introduction - system design

4

● Rely on specialized hardware to improve security
● Three alternatives:

○ Virtual Processor (ARM TrustZone)
○ On-chip Processor (Apple SEP)
○ External Coprocessor (Google Titan M)

● All are types of Trusted Execution Environment (TEE)

Secure World vs Normal World

5

What is Titan M?

6
Source: https://www.techinsights.com/blog/google-pixel-3-xl-teardown

What is Titan M?

7

Specification

8

● SoC based on ARM Cortex-M3
● 64 kB RAM, internal flash memory
● HW accelerators for common

crypto algorithms
● Key manager module and

True Random Number Generator
● Common busses

○ UART for logs and console
○ SPI to communicate with

Android

Source: https://android-developers.googleblog.com/2018/10/building-titan-better-security-through.html

What is it used for?

9

Android hardware-backed security APIs
● Android Verified Boot (AVB)
● Strongbox
● Weaver
● Identity/Faceauth
● …

In general, management of secrets and critical information for the security of the device

Why is it interesting?

10

● First physically separated HSM in Android smartphones
● Root of Trust of the device

○ Has to be inviolable and tamper-proof

● Lack of publicly available knowledge about it:
○ The vendor claimed to publish the sources, never did
○ No existing research/presentation/blogpost
○ Only one CVE write-up

Approach

● Study the Titan M chip to understand its security features
● Firmware analysis

○ Extraction and loading
○ Reverse engineering
○ AOSP review for communication with Android

● Vulnerability analysis and exploitation
○ Dynamic perspective
○ Explore protections as an attacker would

● Black box fuzzing for more vulnerabilities

11

Firmware

● Raw binary on Android FS at /vendor/firmware/citadel
● EC: Embedded Controller

○ Base of the Titan firmware
○ Open Source OS, also developed by Google
○ Written in C

● Features:
○ No dynamic allocation
○ Designed around the concept of task
○ Driven by interrupts

12

Firmware Tasks

13

idle

hook
→ system events, timers

nugget → system control task

AVB → secure boot management

faceauth → biometric data

identity → identity documents support

keymaster → key generation and cryptographic operations

weaver → storage of secret tokens

console → debug terminal and logs

Firmware Updates

● Regular updates in Nugget task

○ First command writes the image on the flash

○ Second command activates it (requires user password)

● SPI rescue in Titan M loader

○ Feature accessible from fastboot mode

○ Wipes all user data

○ No need for user password

14

Firmware

● Firmware security?
○ Conceptually simple
○ No MMU, MPU to give permissions to the memory partitions
○ Secure boot
○ No particular software protections, apart from…

15

○ Hardcoded stack canary checked in the SVC handler

if (*CURRENT_TASK->stack != 0xdeadd00d) {
 next = (int)&CURRENT_TASK[-0x411].MPU_RASR_value >> 6;
 log("\n\nStack overflow in %s task!\n",(&TASK_NAMES)[next]);
 software_panic(0xdead6661,next);
}

Communication with Android

● Protobuf-based
○ Serialization framework by Google
○ Language agnostic
○ Titan M uses the nanopb project
○ Limits the risk of input validation bugs

● Automatically generated primitives to encode/decode messages
● Each task interacting with the main OS has its own .proto file

16

Communication with Android

17

Where to hook?

Communication with Android

18

● Using a debugger, the
HAL, starting from an
Android API

● Using Frida, the citadel
daemon (hook
nos_call_application)

● With a custom client,
communicate with the
driver directly

nosclient

19

● The daemon uses libnos_transport and libnos_datagram
to communicate with Titan M

● We developed a custom client to use those libraries directly
● Using their function, we can send any message to the chip
● nosclient is the main tool we used
● Open sourced at: https://github.com/quarkslab/titanm

https://github.com/quarkslab/titanm

After reverse engineering

20

● Still unknown parts of the firmware (e.g. bootrom)
● To gain more knowledge, exploit a vulnerability

○ Leak interesting memory, or...
○ Obtain code execution

● Goals
○ Improve understanding of the firmware internals
○ Instrument the firmware and test it
○ Load newer versions and search for other vulnerabilities

Downgrade Issue

21

Anti-downgrade mechanism seems to be implemented

… but not used

→ Use SPI Rescue to flash any firmware version

$ fastboot stage <any rec file>
$ fastboot oem citadel rescue

→ Can we downgrade and exploit a known vulnerability?

Challenges

22

● Vulnerabilities are reported on a monthly basis
in the Android security bulletin

● Very few involve Titan M
● Details are very poor

○ Need to manually diff firmware versions to find the patches

● Given a vulnerability:
○ Is it exploitable?
○ How can we reach the vulnerable code?
○ How can we debug a proof-of-concept?

The chosen one

23

● CVE-2021-0454 or CVE-2021-0455 or CVE-2021-0456
● Identity task, command ICpushReaderCert
● Message format:

message ICpushReaderCertRequest{
 bytes x509Cert = 1;
 uint32 tbsCertificateOffset = 2;
 uint32 tbsCertificateSize = 3;
 uint32 signatureOffset = 4;
 uint32 signatureSize = 5;
 uint32 publicKeyOffset = 6;
 uint32 publicKeySize = 7;
 uint32 signAlg = 8;
}

uVar1 = (uint)ic_struct;
 if (*(int *)(uVar1 + 0xbc) == 0) {
LAB_00062822:
 if (pubkey_size != 0) {
 *(uint *)(uVar1 + 0xbc) = pubkey_size;
 memcpy((void *)(uVar1 + 0x78),pubkey_addr,pubkey_size);
 pubkey_size = 1;
 }
 }

The chosen one

24

Structure in RAM for runtime
information of the Identity task

Taken from the message
→ attacker controlled

This is always true
before calling this
command

What can we do with the exploit?

25

● Vulnerable buffer not allocated on the stack
of the function
○ Cannot simply overwrite

the saved return address

● After the buffer we have other runtime data
of the chip…

● … and the list of pointers
to the command handlers

Exploitation

Using nosclient:
● Reset the chip
● Send an Identity ICpushReaderCert command

○ Overwrite ic_struct
○ Overwrite the Nugget structure, writing back initialization values
○ Overwrite the first command handler with the first function/gadget

● Send an AVB GetState command
● Code execution!

26

Exploitation

27

● Code-reuse attack
○ Return Oriented Programming (ROP)

● Cannot fetch arbitrary instructions on writable memory
● Still, we can leak the content of any memory address

○ Leaked the boot ROM
○ Read primitive to debug other vulnerabilities

Improving vulnerability research

● We know what messages can be sent to the Titan M
● We have an idea of the responses we expect

○ nos_call_application returns a meaningful return code

→ Design and develop a structure-aware black-box fuzzer

28

Designing a fuzzer for Titan M

● Fully black-box approach
○ Cannot recompile and instrument the firmware
○ Cannot use DBI
○ Almost no useful debugging information
○ No coverage

● Rely on return value from library call
○ If greater than 1, something went wrong

● Mutation-based
○ Mutate messages respecting Protobuf definitions
○ Random operators to trigger typical vulnerabilities

29

Implementing a fuzzer for Titan M

● Use nosclient
○ Sends custom messages to Titan M
○ Relies on library functions of the Android OS

● Mutate messages with libprotobuf-mutator
● Check return code
● Store and triage inputs generating faulty states

30

Fuzzer workflow

31

Experiment setup

● Google Pixel 3
○ Android 11
○ Rooting required to communicate with SPI driver

● nosclient running natively
● Mutate messages from Keymaster, Identity, and Weaver tasks

○ AVB excluded because of secure boot commands

32

Results

33

Firmware version: 2020-09-25, 0.0.3/brick_v0.0.8232-b1e3ea340
● Buffer overflow in Identity ICpushReaderCert
● Buffer overflow in Identity ICsetAuthToken
● Identity {WICbeginAddEntry, WICaddAccessControlProfile,

WICfinishAddingEntries, ICstartRetrieveEntryValue} make
the chip crash (nullptr-deref)

● Keymaster {FinishAttestKey, IdentityFinishAttestKey}
make the chip reboot

34

Demo

Results

35

Firmware version: latest, 0.0.3/brick_v0.0.8292-b3875afe2
● Identity {WICfinishAddingEntries,

ICstartRetrieveEntryValue} still make the chip crash
● Same function, dereferencing values from uninitialized structures
● Bug report sent to Google
● Not severe enough to be considered as a vulnerability

Some comments

36

● Throughput around 74 msg/sec
● All these results come from the first minutes of fuzzing

○ Some of them even after 1-2 seconds
○ Approach seems promising

● State space probably explored quickly
○ No further results in the subsequent hours

● Return code > 1 ⇏ vulnerability found
○ Some commands require previous configuration and should be ignored
○ I/O, application-specific or timeout errors happen, but rarely

Limitations and possible improvements

37

● No visibility on coverage
● Explore different sources

○ Analyze the actual response
○ Parse the UART log (problem here is accessing that from Android)

● Open the emulation Pandora’s box
○ Completely different approach, with other challenges

● Anyway, hard to reproduce sequences of messages

Conclusion

38

● Titan M is a “first-of-its-kind”
● Interesting findings about the firmware

○ Simple design, but some debatable security measures

● Effective tooling developed to interact with the chip
● Exploited a known vulnerability and leaked the boot rom

○ First code-execution exploit known on Titan M

● Fuzzing can bring even more interesting results

All the tools we developed are available at: https://github.com/quarkslab/titanm

https://github.com/quarkslab/titanm

