
RESEARCH

Wiz Research discovers "ExtraReplica"— a cross-
account database	vulnerability in Azure PostgreSQL

Sagi Tzadik, Nir Ohfeld, Shir Tamari, Ronen Shustin
Apr 28, 2022 14 min read

Tenant isolation is a fundamental premise of the cloud. Organizations trust that the
cloud services they use, especially high value assets such as databases, are isolated from
other customers.

Wiz Research has discovered a chain of critical vulnerabilities in the widely used Azure
Database for PostgreSQL Flexible Server. Dubbed #ExtraReplica, this vulnerability
allows unauthorized read access to other customers’ PostgreSQL databases, bypassing
tenant isolation. If exploited, a malicious actor could have replicated and gained read
access to Azure PostgreSQL Flexible Server customer databases.

•

https://www.wiz.io/blog/tag/research/
https://www.wiz.io/blog/author/sagi/
https://www.wiz.io/blog/author/nir/
https://www.wiz.io/blog/author/shir/
https://www.wiz.io/blog/author/ronen/
https://twitter.com/hashtag/ExtraReplica
https://www.wiz.io/blog/author/sagi/
https://www.wiz.io/blog/author/nir/
https://www.wiz.io/blog/author/shir/
https://www.wiz.io/blog/author/ronen/
https://www.wiz.io/

Wiz Research disclosed ExtraReplica to Microsoft in January 2022. Microsoft confirmed
that the issue has been fully mitigated, and no action is required by Azure
customers. They added that they are not aware of any attempts to exploit this
vulnerability.

This vulnerability did not affect Single Server instances or Flexible servers with the
explicit VNet network configuration (Private access), according to Microsoft. Microsoft
did not provide how many customers or databases were vulnerable.

Read Microsoft’s advisory here.

In this post we walk through the steps of the research process, from analyzing potential
attack surfaces to a complete exploit and how we ultimately bypassed the cloud isolation
model. At a high level, we achieved the following:

1. Gained code execution on our own PostgreSQL Flexible Server instance by
identifying and exploiting a vulnerability in Azure’s PostgreSQL Flexible Server
service.

2. Performed recon within the service’s internal network and discovered that we
had network access to other customer instances in our subnet.

3. Identified a second vulnerability in the service's authentication process: An over
permissive regular expression validation for the certificate's Common Name
(CN), caused by a wildcard (.*) at the end of the regex, allowed us to log in to
a targeted PostgreSQL instance using a certificate issued to an arbitrary
domain. Note the mistake at the end of the regular expression, marked here:
/^(.*?)\.eee03a2acfe6\.database\.azure\.com(.*)$/

By issuing a certificate for our own domain (wiz-research.com)
replication.eee03a2acfe6.database.azure.com.wiz-research.com , we

successfully accessed a database of separate account we owned on a different
tenant, proving cross-account database access.

4. Utilized certificate transparency feed to identify customer targets, ultimately
allowing us to replicate any PostgreSQL Flexible Server instance (except for
instances configured with Private access - VNet) using the previously
mentioned vulnerabilities.

https://aka.ms/PostgreSQLFlexible2022APR28
https://www.wiz.io/

Figure 0: ExtraReplica attack flow

Research mindset

We had previously found vulnerabilities in Azure Cosmos DB. Could we
reproduce a similar issue in other Azure services?

At Black Hat Europe 2021, we presented “ChaosDB: How We Hacked Databases of
Thousands of Azure Customers” — disclosing how we gained unrestricted access to the
databases of Microsoft Azure customers through a chain of misconfigurations in Azure
Cosmos DB.

Our starting point in this previous research was running arbitrary code on a Jupyter
Notebook instance within an internal Azure environment. We discovered that the
Jupyter Notebook instance had network access to internal management APIs, opening
an attack vector to internal Azure components.

Following Black Hat, we wondered whether it might be a pattern and whether other
managed services, which provide customers with a dedicated Virtual Machine that is
part of an internal Azure environment, could also be accessible to sensitive network
components.

This direction led us to the following strategy for finding our next research target.

We looked for a new target with the following properties:

https://blog.wiz.io/how-we-broke-the-cloud-with-two-lines-of-code-the-full-story-of-chaosdb/
https://www.wiz.io/

1. A managed cloud service that provides customers a dedicated virtual machine
instance within an internal cloud environment.

2. A service that would allow us to execute code, either as part of the standard
functionality of the service or through a newly discovered vulnerability. If we
could execute code using a vulnerability, we would be more likely to find a less
strict environment, since the service developers likely did not expect users to
run their code there.

3. Service nature should be of high value, used by many and contain sensitive
information.

Considering all the above points, the first idea we had was to target cloud-managed
database services. Cloud Service Providers (CSPs) provide multiple open-source and
commercial database solutions to customers in the form of a managed service. These
database instances run in an internal cloud environment owned and operated by the
CSP and usually are not part of the user's cloud environment. In addition, most
databases solutions offer functionality to execute OS-level commands, which is exactly
what we are looking for.

We decided to research PostgreSQL Flexible Server. It has almost all the above
properties: It's popular, contains sensitive data, and it appears that all of its instances
are running within an internal Azure environment. PostgreSQL is a big project; it is
complex and offers much more functionality than other database solutions.

What is Azure Database for PostgreSQL?

PostgreSQL is a powerful, open source and mature object-relational database used by
thousands of organizations to store different types of data. It has earned a strong
reputation for its proven architecture and reliability. Azure Database for PostgreSQL -
Flexible Server is one of the four PostgreSQL offerings in Azure. It is a fully managed
Database-as-a-Service that offers dynamic scalability and simplified developer
experience.

https://docs.microsoft.com/en-us/azure/postgresql/flexible-server/
https://www.wiz.io/

Figure 1: PostgreSQL deployment options and their advantages (source)

Azure Database for PostgreSQL attack surface overview

How we chose which component to research

To understand our attack surface, we ran a set of PostgreSQL queries and gathered
some information about our environment. For example: what are our privileges? Which
PostgreSQL features are available? and more. After gaining that knowledge, we
concluded that even though our database user was part of a high-privileged PostgreSQL
group called azure_pg_admin , we were lacking the specific PostgreSQL privileges
required to execute native code, as can be seen in the figure below:

Figure 2: Code execution in operating system level fails due to lack of privileges

This meant that we had to find a way to escalate our privileges within our PostgreSQL
instance. Fortunately, there exists previous research (1, 2) regarding privilege escalation
in PostgreSQL that we used as a reference.

Vulnerability #1 – PostgreSQL privilege escalation

While researching our instance, we found that Azure modified their PostgreSQL engine.
It’s likely that Azure introduced these changes to PostgreSQL engine to harden their
privilege model and add new features. We managed to exploit a bug in those
modifications to achieve privilege escalation, allowing us to execute arbitrary queries as

https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/introducing-flexible-server-for-azure-database-for-postgresql/ba-p/1686616
https://www.cybertec-postgresql.com/en/abusing-security-definer-functions/
https://staaldraad.github.io/post/2020-12-15-cve-2020-25695-postgresql-privesc/
https://www.wiz.io/

a superuser . Obtaining superuser privileges allowed us to execute OS-level
commands on our instance.

While Microsoft has patched this vulnerability, out of an abundance of caution with
respect to other vendors who may have made similar modifications in their PostgreSQL
engine, we are not disclosing exploitation details at this time.

Figure 3: OS-level code execution via Malicious SQL query

Environment recon

After gaining the ability to execute arbitrary code on our PostgreSQL managed instance,
we conducted some recon of the environment. We realized that we were running as the
unprivileged azuredb user inside a docker container that primarily hosted the
PostgreSQL process. The container was running a modified image of Ubuntu 18.04.6
LTS with a recent kernel installed (5.4.0-1063-azure), pretty much ruling out the
option of escaping this container using a known kernel exploit at that time. During our
recon, we also noticed the following network interfaces were accessible from inside the
container:

https://www.wiz.io/

Figure 4: Network interfaces accessible from inside the PostgreSQL container

Looking at the network interfaces, we realized that our container shares a network
namespace with its host machine. Seeing the internal IP addresses gave us an idea—
what if, by routing through one of these internal network interfaces, we could access
other PostgreSQL instances of other customers?

We created another PostgreSQL Flexible instance on a different Azure account and
attempted to access it from the first database we created, through the internal network
interface (eth0 , 10.0.0.0/23) on port 5342. To our surprise, it worked! On top of
that, it worked even when the instance had its firewall configured to deny all
connection attempts. We believe this violates the expected isolation model, as we
had just managed to connect to an unrelated PostgreSQL instance by leveraging some
sort of internal network access. However, since we were still required to have the

username and password for this database to perform any meaningful action (such as
reading or modifying data), the severity of this issue remains quite low.

https://www.wiz.io/

It is also worth mentioning that when we ran the netstat command, there were other
ports besides 5432 (PostgreSQL) that were listening on all interfaces (0.0.0.0).
However, when we attempted to connect to some of them from the internal subnet, we
were timed out. We performed more tests, including listening on an arbitrary port and
attempting to connect to from another instance, which failed. We suspect that there was
a firewall configured to explicitly permit the connections for port 5432.

This made us wonder, why was this connection permitted to begin with? What was the
legitimate reason that our instance could access other instances through the
10.0.0.0/23 subnet?

Vulnerability #2 – cross-account authentication bypass using a forged certificate

Some people, when confronted with a problem, think "I know, I'll use
regular expressions." Now they have two problems (xkcd)

To explore why our instance could access other instances internally, we decided to
examine two files found on the machine: pg_hba.conf and pg_ident.conf. According to
PostgreSQL documentation, these files are responsible for client authentication and
username mappings, respectively.

The pg_hba.conf file defines which clients can connect to which database, from
which IP range, using which username and authentication method.

Let’s examine these configuration files, taken from our instance:

pg_hba.conf:

https://xkcd.com/1171/
https://www.postgresql.org/docs/14/auth-pg-hba-conf.html
https://www.postgresql.org/docs/14/auth-username-maps.html
https://www.wiz.io/

Figure 5: Azure PostgreSQL Flexible Server pg_hba.conf

In line 25, we see that clients can connect to the instance from both the internal and the
external network using standard password authentication (md5). Additionally, in lines
17 to 21, the special account replication can only authenticate from within the
internal networks using client certificate authentication (subnets 10.0.0.0/8 ,
172.16.0.0/12 , 192.168.0.0/16).

What is the purpose of the replication user? Turns out that PostgreSQL offers a
unique feature that allows copying the database data from one server to another, hence
“replicating” the database. This is commonly used in backup and failover/high
availability scenarios. For example, Azure uses this for its high availability feature:

https://docs.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-high-availability
https://www.wiz.io/

Figure 6: The high availability feature of Azure's Flexible Server

If we could manage to authenticate as the replication user to other PostgreSQL
instances of other customers, we should be able to get a complete copy (i.e. replication)
of their databases.

When authenticating with a client certificate, PostgreSQL verifies that the supplied
certificate is signed by a trusted Certificate Authority (CA). The list of trusted CAs is
found in the SSL certificate authority file. The SSL certificate authority file location is
found in the PostgreSQL server configuration under the ssl_ca_file field.

####### CERT CONNECTIVITY RELATED CONFIG ######

ssl = 'on'

ssl_ca_file = '/datadrive/certs/ca.pem'

ssl_cert_file = '/datadrive/certs/cert.pem'

ssl_key_file = '/datadrive/certs/key.pem'

ssl_ciphers = 'ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDH

Figure 7: The SSL configuration pointing to ca.pem, as can be seen in postgresql.certoverrides.conf

By examining this file, we learned that Azure trusts certificates of multiple CAs, with one
of them being DigiCert. DigiCert is well-known Root Certificate Authority and SSL
certificate issuer that serves individuals and developers as well as enterprises.

Baltimore CyberTrust Root

DigiCert Global Root CA

DigiCert Global Root G2

DigiCert Global Root G3

Microsoft Internal Corporate Root

Ameroot – (Self signed)

Figure 8: The list of trusted Certificate Authorities supported by Azure PostgreSQL Flexible Server

Azure used another PostgreSQL feature to verify the certificate's Common Name (CN).
This is where pg_ident.conf comes in.

The pg_ident.conf file extends the pg_hba.conf file. When using authentication

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-SSL-CA-FILE
https://www.wiz.io/

methods like Ident or Certificate Authentication , the name of the user that

initiates the connection might be different from the actual user it needs to connect as. In
such cases, a user map is applied to match the connection user to the respective
PostgreSQL user. This allows to link a Common Name (CN) to a specific user. For
example, a user with a certificate signed to alice.com will be able to connect as Alice,
or a user with a certificate signed to bob.com can connect as Bob. pg_ident.conf
also supports regular expressions for more complex Common Name verification.

This is the pg_ident.conf configuration in Azure:

pgusermap    /^(.*?)\.eee03a2acfe6\.database\.azure\.com(.*)$    \1

pgusermap    /^rl\.eee03a2acfe6\.prod\.osdb\.azclient\.ms$    replication

Inspecting the map specified in the pg_ident.conf file, we noticed some interesting
logic:

According to the first entry, any user with a certificate CN that matches a
certain regular expression can log in using a database username equivalent to
the first part of the CN. For example, a user who has a certificate signed to
azuresu.eee03a2acfe6.database.azure.com , will be able to connect to the

replication database with the azuresu user.

According to the second entry, the replication user can log in with a certificate
CN value equal to rl.eee03a2acfe6.prod.osdb.azclient.ms (which
appears to be unique to our instance).

Additionally, the first entry also permits the replication user to log in, because
its username matches the regular expression as well
(replication.eee03a2acfe6.database.azure.com).

Eagle-eyed readers will notice something strange about this regular expression:

pgusermap /^(.*?)\.eee03a2acfe6\.database\.azure\.com(.*)$ \1

Why does this regular expression end with (.*) ? This is clearly a mistake. Could we
register a domain that matches this regular expression, such as
replication.eee03a2acfe6.database.azure.com.wiz-research.com , generate a

https://www.wiz.io/

client certificate for it, and then use that to log into our server by impersonating the
replication user? Short answer - yes.

All we must do to exploit this loose regular expression is to visit digicert.com and issue a
certificate to replication.eee03a2acfe6.database.azure.com.wiz-
research.com . Since we are the legitimate owners of wiz-research.com , we passed
the verification process and were issued the client certificate successfully. In practice we
ended up purchasing a certificate from RapidSSL, which is an intermediate CA of
DigiCert, as we found the process easier. This is how we forged a valid SSL client
certificate to our own instance that could be used by anyone to connect and replicate our
database.

Accessing other customers’ databases

So far, we have only talked about logging into our own PostgreSQL instance. How could
we apply this trick to gain access to other customers’ instances? Let’s take another look
at the regular expression from the pg_ident.conf file:

pgusermap /^(.*?)\.eee03a2acfe6\.database\.azure\.com(.*)$ \1

We can see that there is a unique identifier for each database instance. To generate a
custom certificate for a specific database, we would need to know this identifier in
advance. How could we obtain this information?

We discovered that the database’s unique identifier appears in the server’s SSL
certificate. By attempting to connect other databases in the internal network using SSL,
we could retrieve their SSL certificates and extract the unique identifier for each
database in the subnet.

Figure 9: Test connection to a random customer instance to retrieve the identifier

After discovering the unique identifier of the target database, we could issue a new client
certificate, but this time with the target’s identifier,

https://www.wiz.io/

replication.ebe6ed51328f.database.azure.com.wiz-research.com , and use it
to connect to the target database, having full read privileges.

But what if we didn’t want to limit ourselves to other customers that happened to share
our subnet? What if we wanted to retrieve data from a specific target database
(assuming we know its domain name), for example wizresearch-target-
1.postgres.database.azure.com ? In this case, we can get the CN with the unique
identifier by searching for the database domain name in the public Certificate
Transparency feed:

Figure 10: Using crt.sh to identify the CN including the unique identifier

Once we have the identifier, we can purchase a certificate with a forged common name:

Figure 11: The crafted certificate we purchased for our tests

Next, we can find the relevant Azure region for the target instance by resolving the
database domain, and matching the IP address to one of Azure’s public IP ranges (for
example):

https://en.wikipedia.org/wiki/Certificate_Transparency
https://crt.sh/
https://www.microsoft.com/en-us/download/details.aspx?id=56519
https://www.wiz.io/

Figure 12: Snippet of the IP ranges of SQL East US region

Finally, we can create our attacker-controlled database in the same region as our target
and use it as a point of entry to exploit the vulnerabilities we discovered, and gain access
to the data we were after!

Attack steps summary

1. Choose a target PostgreSQL Flexible Server.

2. Retrieve the target’s common name from the Certificate Transparency feed.

3. Purchase a specially crafted certificate from DigiCert or a DigiCert Intermediate
Certificate Authority.

4. Find the target’s Azure region by resolving the database domain name and
matching it to one of Azure’s public IP ranges.

5. Create an attacker-controlled database in the target’s Azure region.

6. Exploit vulnerability #1 on the attacker-controlled instance to escalate
privileges and gain code execution.

7. Scan the subnet for the target instance and exploit vulnerability #2 to gain read
access!

https://www.wiz.io/

Impact

The initial PostgreSQL vulnerability (vulnerability #1) affected both the Azure
PostgreSQL Flexible Server and the Azure PostgreSQL Single Server offerings.
However, the Single Server offering was not affected by the cross-account
authentication bypass vulnerability (vulnerability #2), and as a result, we did not
achieve cross-tenant access in that service. In addition, Microsoft’s investigation
identified that the cross-account authentication bypass did not affect Azure PostgreSQL
Flexible customers who configured their database’s network settings to work with
Private access (VNet Integration). Therefore, we can conclude that customers of Azure
Database for PostgreSQL Flexible Server in any region configured with public network
access, regardless of firewall rules, were vulnerable.

It’s important to note that upon setup of a Flexible Server database, users are required
to configure their network connectivity to Public access, which is the default selection,
or Private access (VNet Integration). This cannot be changed after selection.

Figure 13: Initial setup of Flexible Server database network settings

While many organizations use Azure Database for PostgreSQL Flexible Server,

04:11

https://docs.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-networking
https://www.wiz.io/

Microsoft did not provide the number of customers that were vulnerable.

Responsible disclosure

We disclosed this vulnerability to MSRC In January 2022. MSRC very quickly
investigated and issued a fix, including new mitigations.

We appreciate MSRC’s cooperation and their attentiveness to our report. Their
professional approach and close communication throughout the disclosure process is a
model for all vendors.

Disclosure timeline

11/01/22 – Wiz Research reported the vulnerabilities to MSRC (case 69557)

13/01/22 – MSRC started investigating the vulnerabilities and subsequently
fixed certificate issue (vulnerability #2)

14/01/22 – MSRC verified their fix, as observed by Wiz Research (certificate
transparency).

15/01/22 – MSRC awarded Wiz Research with a $40,000 USD bounty

18/01/22 – MSRC stated that they successfully reproduced all vulnerabilities

25/02/22 – A fix was rolled out to all vulnerable instances

Security through transparency

Tenant isolation is a fundamental premise of the cloud. Organizations trust that the
cloud services they use, especially high value assets such as databases, are isolated from
other customers.

Microsoft and other CSPs typically publish documentation on their current isolation
models and architecture. However, we noticed that the PostgreSQL Flexible Server lacks
public isolation documentation, making it difficult for customers to evaluate the risk
when they onboard such a service.

This issue is not unique to Azure alone, as other cloud providers tend to share isolation
model for only a limited number of services.

Cloud providers should be more transparent about their isolation architecture,
especially for sensitive services such as databases. This would allow customers to better

https://aka.ms/PostgreSQLFlexible2022APR28
https://search.censys.io/certificates/a786407e180c1cbfd70a355926b8ac92002328e609bde7c568bd80bae6e1f872
https://www.wiz.io/

evaluate their risk when using such services.

We recommend that organizations ask their cloud service providers for documentation
of their isolation architecture for the services they use.

Cloud CVE: The need to document cloud vulnerabilities

As with other cloud vulnerabilities, this issue did not receive a CVE identifier (unlike
software vulnerabilities). It is not recorded or documented in any database. Monitoring
cloud vulnerabilities is critical for customers. Such documentation helps customers
evaluate the security of their CSP and take action when required. The absence of such a
database impairs the ability of customers to monitor, track, and respond to cloud
vulnerabilities.

Read our blog on the need for a cloud vulnerabilities database or watch our Black Hat
session.

This vulnerability will be documented in the csp_security_mistakes GitHub project, a
community-driven project to monitor and record cloud vulnerabilities.

Stay in touch!

Hi there! We are Shir Tamari (@shirtamari), Ronen Shustin
(@ronenshh), Nir Ohfeld (@nirohfeld) and Sagi Tzadik (@sagitz_) from the Wiz Research
Team. We are a group of veteran Whitehat hackers with a single goal in mind – make the
cloud a safer place for everyone. We primarily focus on finding new attack vectors in the
cloud and uncovering isolation issues in cloud vendors. We would love to hear from you!
Feel free to contact us on Twitter or contact us through direct email: research@wiz.io.

https://www.wiz.io/blog/security-industry-call-to-action-we-need-a-cloud-vulnerability-database/
https://www.youtube.com/watch?v=JEA_Zgi8Tjg
https://github.com/SummitRoute/csp_security_mistakes
https://twitter.com/shirtamari
https://twitter.com/ronenshh
https://twitter.com/nirohfeld
https://twitter.com/sagitz_
https://twitter.com/wiz_io
mailto:research@wiz.io
https://www.wiz.io/blog/hardening-your-cloud-environment-against-lapsus-like-threat-actor/
https://www.wiz.io/

Learn how to harden your cloud environment against LAPSUS$-like threat actors

Hardening your cloud environment against LAPSUS$-like
threat actors

This is the full story of the Azure ChaosDB Vulnerability that was discovered and disclosed by
the Wiz Research Team, where we were able to gain complete unrestricted access to the
databases of several thousand Microsoft Azure customers.

ChaosDB explained: Azure's Cosmos DB vulnerability
walkthrough

OMIGOD: Critical Vulnerabilities in OMI Affecting Countless
Azure Customers

https://www.wiz.io/blog/hardening-your-cloud-environment-against-lapsus-like-threat-actor/
https://www.wiz.io/blog/hardening-your-cloud-environment-against-lapsus-like-threat-actor/
https://www.wiz.io/blog/chaosdb-explained-azures-cosmos-db-vulnerability-walkthrough/
https://www.wiz.io/blog/chaosdb-explained-azures-cosmos-db-vulnerability-walkthrough/
https://www.wiz.io/blog/omigod-critical-vulnerabilities-in-omi-azure/
https://www.wiz.io/blog/omigod-critical-vulnerabilities-in-omi-azure/
https://www.wiz.io/

Wiz Research recently found 4 critical vulnerabilities in OMI, which is one of Azure's most
ubiquitous yet least known software agents and is deployed on a large portion of Linux VMs
in Azure.

Wiz © 2022

https://www.wiz.io/blog/omigod-critical-vulnerabilities-in-omi-azure/
https://www.wiz.io/
https://www.wiz.io/

