
Exploiting Intel Graphics Kernel Extensions on
macOS

A Pwn2Own 2021 Apple Safari Sandbox Escape
June 29, 2022 / Jack Dates

To escape the Safari sandbox for our Pwn2Own 2021 submission, we exploited a vulnerability in the Intel
graphics acceleration kernel extensions (drivers) on macOS. This post will detail the bug and how we
went about exploiting it to achieve reliable kernel code execution.

We delayed publishing this writeup as we discovered and reported a multitude of similar issues to Apple
over the past year, the last of which was patched recently. With other researchers catching on, Intel
graphics-related CVEs have become increasingly common among Apple’s security update listings. Quite
recently, there was even an exploit discovered in-the-wild targeting the same Intel graphics kernel
extensions discussed in this post.

A demo of the exploit obtaining kernel code execution from unprivileged user context

IOKit Graphics Acceleration Overview

There are a variety of kernel drivers that implement graphics acceleration on macOS. The two relevant to
the vulnerability discussed in this post are:

E N G I N E E R I N G B L O G

https://blog.ret2.io/2022/06/29/pwn2own-2021-safari-sandbox-intel-graphics-exploit/
https://www.zerodayinitiative.com/blog/2021/4/2/pwn2own-2021-schedule-and-live-results
https://support.apple.com/en-us/HT213257
https://support.apple.com/en-us/HT213220
https://blog.ret2.io/assets/img/p2o_2021_eop_demo.mp4
https://blog.ret2.io/

IOAcceleratorFamily2 : generic platform-agnostic code and classes, e.g. IOAccelContext2
AppleIntel*Graphics : hardware-specific code and subclasses, e.g. IGAccelGLContext

The hardware-specific kernel extension (kext) that gets loaded depends on the CPU generation:

AppleIntelICLGraphics for the latest Ice Lake hardware
AppleIntelKBLGraphics for Kaby Lake/Coffee Lake
AppleIntelSKLGraphics for Skylake

… and so on for older generations.

These drivers expose functionality to userspace through IOKit. In typical usage, drivers implement 3
things:

Services
User clients
External methods

A userspace program that wishes to communicate with the driver first obtains a mach port for the service.
It then opens a specific user client indicated by numeric ID. External methods can then be invoked on the
user client, selecting the method by numeric ID, optionally passing scalar and/or binary blob arguments.
External methods can be thought of as RPC calls into the kernel driver.

From a Google Project Zero blogpost which analyzed an iOS exploit chain

Another common way to interact with user clients is through shared memory (between userspace and
kernel).

IntelAccelerator / IOAccelerator

On Intel-based Macs, the graphics acceleration service is named IntelAccelerator , or
IOAccelerator . Opening this service is explicitly allowed by the renderer/WebContent sandbox,

https://en.wikipedia.org/wiki/Ice_Lake_(microprocessor)
https://en.wikipedia.org/wiki/Kaby_Lake
https://en.wikipedia.org/wiki/Coffee_Lake
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Features/Features.html
https://blog.ret2.io/assets/img/p2o_2021_eop_iokit_diagram.png
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://github.com/WebKit/WebKit/blob/4445bdf30face773b63e3effc38f7691896e0ddb/Source/WebKit/WebProcess/com.apple.WebProcess.sb.in#L318

although it appears there has been some effort to restrict allowed user clients and external methods.
While Safari has a separate GPU process, IOAccelerator is still allowed by the WebContent sandbox
profile (as of writing).

To get a sense of available attack surface in IOAccelerator we can enumerate the service’s user
clients with a little reverse engineering, by looking for an overridden newUserClient function. This
function will be invoked when userspace calls IOServiceOpen .

AppleIntelICLGraphics does not implement IntelAccelerator::newUserClient , so we’ll look
to the superclass implemented in IOAcceleratorFamily2 . There we find
IOGraphicsAccelerator2::newUserClient , which contains a switch-case over the input ID, giving

us a collection of user clients we can create (each implemented as a C++ class).

From there, we can look for external methods for each user client we are interested in. We look for each
class overriding one of the following functions:

externalMethod

getTargetAndMethodForIndex

getAsyncTargetAndMethodForIndex

Each of these will take a numeric selector identifying the external method, and will either directly invoke
the implementation, or return a structure containing information about it (e.g. a function pointer and
argument types/counts). The corresponding userspace API, which ends up invoking these kernel
functions, is the IOConnectCallMethod family of functions.

Less commonly, there are also “traps,” which can be invoked using one of the IOConnectTrap
functions. The respective overridden kernel functions are getTargetAndTrapForIndex and
getExternalTrapForIndex .

Some user clients also provide for mapping shared memory into userspace with IOConnectMapMemory .
These user clients override the clientMemoryForType kernel function.

Inspecting a User Client

As an example, take the user client of type 6 on the IntelAccelerator service,
IGAccelSharedUserClient (inheriting from IOAccelSharedUserClient2). Looking for external

methods, we come across:

IOExternalMethod* IOAccelSharedUserClient2::getTargetAndMethodForIndex(..., unsigned
int index) {
 if (index < 20)
 return &IOAccelSharedUserClient2::sSharedMethods[index];
 return 0;
}

We see there is a static array of external method structures in the data section. This is a common pattern.

This specific user client (IGAccelSharedUserClient) is a helper of sorts, and allows creating various
objects to be used with other user clients. A few of the external methods are new_resource ,
create_shmem , allocate_fence_memory , and set_resource_purgeable . The “namespace” of

created objects can be shared with another user client by connecting the two with
IOConnectAddClient .

Resources (a.k.a textures), represented by the IGAccelResource class, will be useful later on. The
new_resource external method creates a resource with user-specified properties and returns a

https://github.com/WebKit/WebKit/blob/4445bdf30face773b63e3effc38f7691896e0ddb/Source/WebKit/WebProcess/com.apple.WebProcess.sb.in#L123
https://github.com/WebKit/WebKit/tree/4445bdf30face773b63e3effc38f7691896e0ddb/Source/WebKit/GPUProcess
https://developer.apple.com/documentation/iokit/1514515-ioserviceopen?language=objc
https://developer.apple.com/search/?q=ioconnectcallmethod
https://developer.apple.com/search/?q=ioconnectTrap
https://developer.apple.com/documentation/iokit/1514377-ioconnectmapmemory?language=objc
https://developer.apple.com/documentation/iokit/1514609-ioconnectaddclient?language=objc

resource id back to userspace. It also maps the backing buffer of the resource (of user-specified size) into
the process’s address space.

Sideband Buffers

There are several user clients inheriting from IOAccelContext2 . These “context” objects provide a few
types of shared memory, type 0 being a so-called sideband buffer.

Sideband buffers can be submitted via external method 2,
IOAccelContext2::submit_data_buffers . This eventually ends up in
IOAccelContext2::processSidebandBuffer , which processes “tokens” in the sideband buffer

according to a simple binary format:

The first two bytes indicate the token id, a sort of opcode, that will determine how the token body is to be
handled. The next two bytes declare the total token size in dwords, i.e. a token with an empty body would
have a size of 2.

The next slot, db0_off , indicates an offset into “data buffer 0.” In this context, a data buffer is a special
type of resource (IGAccelResource). A token opcode of 0 can be used to “bind” data buffer 0; the
token body will contain the desired resource id to bind.

When iterating over the sideband buffer tokens, an auxiliary structure, IOAccelCommandStreamInfo ,
will contain certain fields describing the state of the command stream and current token. This provides
convenient access to common fields for the various token handlers. One such field, db0_ptr , stores a
pointer into data buffer 0, offset by the respective token’s db0_off .

The function processSidebandBuffer performs some basic bounds checking to ensure db0_off
and token_size are not too large, then defers handling the token to a virtual method
processSidebandToken .

The various overridden implementations follow a similar pattern for most of the context objects. If the
context is supposed to handle the opcode, it passes off to a token handler for that opcode, otherwise it

https://blog.ret2.io/assets/img/p2o_2021_eop_sideband_format.svg

defers to the superclass processSidebandToken function. All of the token handlers seem to be
consistently named process_token_* , so they are relatively easy to enumerate.

Out-Of-Bounds Write in VPHAL Handler

One of the IOAccelContext2 subclass user clients, IGAccelVideoContextMain , has a handler for
“VPHAL” tokens. Relevant portions of the vulnerable code are reproduced below:

void IGAccelVideoContextMain::process_token_VPHAL(
 IGAccelVideoContextMain *this,
 IOAccelCommandStreamInfo *info)
{
 unsigned int* cur = info->sb_cur; // current token
 IGAccelVideoContextMain::patch_vphal_command_buffer(this, info, cur+5);
}

void IGAccelVideoContextMain::patch_vphal_command_buffer(
 IGAccelVideoContextMain *this,
 IOAccelCommandStreamInfo *info,
 unsigned int *sb)
{
 // offset pointer into data buffer 0
 unsigned int* db0 = info->db0_ptr;

 // take a resource id from sb, get its "gpu address"
 unsigned long gpu_addr;
 this->bind_resource(this, info, *sb>>16, &gpu_addr, ...);

 // get index from sb
 unsigned long idx = (*sb>>3)&0x7f;

 // bounds check the index against dbuf0 base/length
 if (&db0[idx+1] <= info->dbuf0_base + info->dbuf0_size) { // <--- [1]
 // write low/high 32 bits
 db0[idx] = gpu_addr;
 db0[idx+1] = gpu_addr>>32; // <--- [2]
 }
}

The bounds check at [1] is off-by-one. It ensures that db0[idx] is within the bounds of data buffer 0,
however the write to db0[idx+1] at [2] might be out-of-bounds. This gives us an out-of-bounds
write primitive to the 4 bytes immediately after a resource buffer.

While we can only speculate, this bug may have been introduced when GPU addresses became 64-bit
instead of 32-bit, and the bounds check wasn’t updated to match.

Resources can be created with a parent resource and a 64-bit offset, which sets the child resource’s GPU
address to be the parent’s plus the offset. We can discover the parent’s GPU address through intended
functionality of the driver, so we’ll know what value to offset from. This gives us full control of the 4 bytes
written out-of-bounds.

Resource Buffer Allocation

Our next task is to find a corruption target that we can place directly after the resource buffer, whose first
4 bytes would be “useful” to corrupt. It will help to understand how and where resource buffers are
allocated in kernel memory so that we can reliably control what gets allocated around it.

Virtual memory from the perspective of the Mach kernel is managed through a hierarchy of vm_map
objects. The top-level map, kernel_map , encompasses the entire kernel virtual memory range. Sub-

https://en.wikipedia.org/wiki/Mach_(kernel)

maps reserve a smaller range of virtual addresses within the parent map (which is usually kernel_map).
Lots more info can be found here.

A resource buffer is implemented as an IOBufferMemoryDescriptor with, among others, the
kIOMemoryPageable option set. The backing buffers for pageable memory descriptors come from a

special set of sub-maps for pageable IOKit allocations, managed by the global structure
gIOKitPageableSpace . This space allows for up to 8 maps of 512MB each.

The main entrypoint for allocating in pageable space is IOIteratePageableMaps . The algorithm is
pretty simple: starting at the submap with index hint (map used for the last successful allocation),
iterate backwards until a map is able to service the allocation. If none have enough space, create a brand
new 512MB sub-map.

Ensuring Reliable Allocation Placement

Pageable space seems to primarily be used for binary-blob-like data, so we chose to target something
outside pageable space, i.e. by placing the resource buffer at the very end of a sub-map, and the victim
object right after.

In order to make this reliable, our strategy will look something like:

1. Force allocation of a brand new 512MB sub-map with a 512MB resource
it is highly unlikely a system under normal usage will have an existing 512MB hole in
kernel_map , this effectively guarantees our resource will be placed at the end of virtual

memory.
2. Place data buffer 0 at the end of the new map

free the 512MB resource
allocate a padding resource to fill the start of the map, with size 512MB - <size of dbuf0>
allocate dbuf0

3. Allocate the victim object, which for reliability, should be sufficiently large enough to be placed at the
end of virtual memory (i.e. there are no holes in kernel_map large enough for the victim object).

Now we must find a “large” victim object that we can allocate with an interesting first 4 bytes.

Identifying Viable Corruption Targets / Victim Objects

There are a few common memory allocation functions in the kernel, for example
kernel_memory_allocate and kalloc . kalloc is the most common method of dynamically

allocating memory in kernel code.

For kalloc , allocations of 0x4000 or less are handled by the zone allocator. 0x80000 (512KB) or
less goes to kalloc_map , a special sub-map. Anything larger is allocated directly from kernel_map . If
we needed to, we could completely fill kalloc_map such that further allocations would fall back to
kernel_map . This means, if we are looking for candidate victim objects allocated through kalloc , we

should search for allocations that can be at least 0x4001 bytes.

Binary Ninja analysis can be pretty helpful here, allowing us to script searching for any calls to the various
allocation functions with a possibly large enough size argument. (analysis will take quite a while, and you
might need to force analyze a few functions for the script to work, and/or add __noreturn to panic)

if xref'ing kalloc, the internal kalloc function has no symbol name
need to get the address manually (tailcalled from kalloc_external)
xrefs = bv.get_callers(0xffffff800028c8d0)
minsize = 0x4001
sites = []
sizes = []

http://newosxbook.com/bonus/democratizingZones.pdf
https://opensource.apple.com/source/xnu/xnu-7195.81.3/iokit/Kernel/IOLib.cpp.auto.html#:~:text=gIOKitPageableSpace
https://opensource.apple.com/source/xnu/xnu-7195.81.3/iokit/Kernel/IOLib.cpp.auto.html#:~:text=IOIteratePageableMaps
https://binary.ninja/

for ref in xrefs:

 print(repr(ref))
 mlil = ref.function.get_low_level_il_at(ref.address).mlil
 if mlil.operation not in (MLIL_CALL, MLIL_TAILCALL):
 raise Exception("bad mlil")

 size = mlil.operands[2][1] # change second index depending on which arg is size
 print("size: "+repr(size))
 vals = size.possible_values

 if vals.type in (RegisterValueType.ConstantPointerValue, RegisterValueType.ConstantValue)\
 and vals.value < minsize:
 continue

 elif vals.type in (RegisterValueType.UnsignedRangeValue, RegisterValueType.SignedRangeValue):
 maxx = max(r.end for r in vals.ranges)
 if maxx < minsize:
 continue

 elif vals.type == RegisterValueType.InSetOfValues:
 if all(v < minsize for v in vals.values):
 continue

 sites.append(ref)
 sizes.append(vals)

print("\n\n"+"="*34+"\n")
for i in range(len(sites)):
 print("0x%016x %-48s %r"%(sites[i].address, sites[i].function.symbol.full_name, sizes[i]))

Corpse Footprints

The victim structure we targeted with our exploit involves corpses. In XNU, a corpse is a forked, dead
version of a task typically generated during certain exceptions. It is also possible to directly generate one
with a call to task_generate_corpse , which returns a mach port representing the corpse.

Note: Following Pwn2Own 2021, Apple updated the WebContent sandbox to block this interface.

Upon creating a corpse, a sort of snapshot of its memory footprint is collected in a variably sized binary
format. It is allocated in vm_map_corpse_footprint_collect directly from kernel_map with
kernel_memory_allocate . The size is dependent on the task’s virtual memory size, up to a maximum

of 8MB.

The size is stored in the first field of the allocation, cf_size :

struct vm_map_corpse_footprint_header {
 vm_size_t cf_size; /* allocated buffer size */
 // ...
};

and upon destruction of the corpse in vm_map_corpse_footprint_destroy , cf_size is passed as
the size to vm_deallocate .

By corrupting cf_size , we can artificially enlarge the footprint such that it overlaps adjacent victim
allocations, which will then be freed along with the footprint.

http://newosxbook.com/files/corpses.pdf
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/vm/vm_map.c.auto.html#:~:text=kernel_memory_allocate
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/vm/vm_map.c.auto.html#:~:text=%0avm_map_corpse_footprint_destroy

This allows us to induce a UAF of the victim object, although we again should stick to sufficiently large
allocations for reliability’s sake. There is a caveat with this UAF technique in that the victim object must be
pageable memory, as opposed to “wired” memory.

Wired Kernel Allocations

The vast majority of kernel allocations are wired. When these mappings are removed with
vm_map_remove , a flag VM_MAP_REMOVE_KUNWIRE indicates that the virtual memory entry’s wired

count (a refcount of sorts) should be decremented. Either way, it waits for the wired count to reach zero
before actually removing the entry.

The corpse footprint is one of the rare objects allocated as pageable, and so upon freeing, the unwire flag
will not be used. If the overlapped victim allocation is wired, the kernel thread will hang, waiting for an
unwire that will not occur. In practical terms, this means we can only UAF a pageable victim allocation.

Conveniently, we have already encountered a potentially useful pageable allocation: IOKit pageable
space. The plan at this stage becomes:

1. Allocate a new pageable map with a data buffer at the end
2. Allocate the corpse footprint
3. Allocate a new-new pageable map after the footprint
4. Allocate a second data buffer in the new-new map
5. Trigger the bug, enlarging the footprint
6. Destroy the corpse, freeing both the footprint and the new-new map
7. The second data buffer now points to freed memory

Using VPHAL tokens (but this time with in-bounds offsets), we can easily write arbitrary 64-bit values to
the freed data buffer. Yet again, for reliability, it is best to attempt reclaiming the freed data buffer memory
with large enough objects.

Initial Kernel Information Leaks

At this point, we have turned the 4 byte out-of-bounds write into the ability to arbitrarily corrupt the
contents of any large allocation. To obtain a few information leaks, we’ll abuse mach message bodies,
which have an upper allocation size limit of roughly 64MB.

Some relevant background: mach message bodies have a header followed by the rest of the message.
The message can be “simple” or “complex” as indicated by a bit in one of the header fields,
msgh_bits . A simple message is simply raw bytes. A complex message can contain several

descriptors, which can be used to send port rights and/or memory mappings to the message recipient. In
either case, the header field msgh_size indicates the buffer size of the entire message body.

https://blog.ret2.io/assets/img/p2o_2021_eop_footprint_before.svg
https://blog.ret2.io/assets/img/p2o_2021_eop_footprint_after.svg

Mach messages are represented in the kernel by ipc_kmsg structs, which contain a field ikm_header
pointing to the message body copied in and converted from its userspace representation. The body will
be our corruption target.

mach_port_peek allows “peeking” at the first message on a port’s receive queue. One of the peeked
values is the message trailer, usually appended to the message body by the mach kernel. The trailer is
normally located at ikm_header + ikm_header->msgh_size , but by corrupting msgh_size , we can
move the trailer out-of-bounds to obtain an out-of-bounds read:

Note: mach_port_peek is also no longer allowed by the WebContent sandbox!

We use this technique on two different leak targets:

1. The first will be a mach message body containing port descriptors.
When converted from their userspace representations, the numeric mach port in a port descriptor
is replaced by a pointer to the corresponding ipc_port object. We need to leak two
immediately adjacent ipc_port objects. The reasoning will be explained in the next section.

2. The second leak target will be the contents of an OSArray containing a single OSData object.
Leaking the address of the OSData object will give us a location from which to get a text leak
later on (the first field of the OSData is the vtable).

Using OSObject ’s for kernel exploitation has been done many times in the past. They can conveniently
be allocated/freed by attaching the OSObject to property names of an IOSurface (something we are
allowed to do from the WebContent sandbox). The objects are deserialized in the kernel from either an
XML-like text format or a binary format.

The binary format (deserialized by OSUnserializeBinary) allows for more control over allocation sizes;
e.g. we can allocate an OSArray with capacity for 65536 elements, then place a single OSData within
it, leaving the rest empty.

Circumventing zone_id_require with a Misaligned Port

It would be relatively simple to corrupt the contents of an OSArray to contain a fake OSObject pointer.
Since these are C++ classes, we’d immediately hijack control flow through a fake vtable. However, we’ll
need a text leak (kernel code address) at minimum to have somewhere to jump to. We also need to know

https://blog.ret2.io/assets/img/p2o_2021_eop_leak_target_before.svg
https://blog.ret2.io/assets/img/p2o_2021_eop_leak_target_after.svg
https://blog.siguza.net/v0rtex/
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://opensource.apple.com/source/xnu/xnu-7195.81.3/libkern/c++/OSSerializeBinary.cpp.auto.html#:~:text=OSUnserializeBinary

where to point the fake OSObject in the first place (which would then contain the fake vtable etc.); or in
other words, the address of data we control.

To obtain these leaks, we’ll need to get a bit creative with mach ports. We are going to craft a fake port
with the goal of obtaining a semi-arbitrary read. The biggest challenge with creating a fake port is
bypassing various zone_require / zone_id_require calls. This Project Zero post explains it well:

zone_require is a software mitigation introduced in iOS 13 that adds checks that certain pointers are
allocated from the expected zalloc zones before using them. The most common zone_require checks
in the iOS kernelcache are of Mach ports; for example, every time an ipc_port is locked, the
zone_require() function is called to check that the allocation containing the Mach port resides in the
ipc.ports zone (and not, for example, an OSData buffer allocated with kalloc()).

To deal with this, we can leverage the fact that zone_require doesn’t care about proper alignment,
only that the pointer lies somewhere within the appropriate zone. We’ll use the two adjacent ports we
leaked earlier, and craft a fake ipc_port misaligned in between the two.

To introduce this fake port into our ipc space, we’ll again corrupt a mach message body. Instead of
corrupting the in-flight message body’s msgh_size , we perform several writes to turn it into a complex
message body containing a port descriptor with a send right to our fake port. If we can survive receiving
this message, a new send right to the fake port will be added to our ipc space.

Another side note: we are unsure if it’s possible to apply this technique to non-x86 platforms, as there
is some signature validation code that is essentially nopped out on x86. After copying in a mach
message, the kernel calculates a signature of the message body and all descriptors with ikm_sign .
When copying out the message, it re-calculates the signature and checks for a match, otherwise it
panics.

In theory, it should be possible to race performing the message body corruption while the kernel is still
copying in descriptors before the signature is calculated. If it’s possible to make the race reliable by
forcing the kernel to take a long time to copy in all the descriptors, or to somehow check if the race
was lost and un-corrupt the message and retry, this technique might be made to work.

When receiving a message, port descriptors are processed in ipc_kmsg_copyout_port_descriptor ,
although most of the logic is further down in ipc_object_copyout . Carefully tracing how the fake ipc
object is processed/checked gives us some constraints on how some of the fake port’s fields should look
in order to survive.

io_bits : int-sized bitfield at offset 0
high bit must be set, indicating the port is active [1]
remaining high 15 bits indicate the object type, must be anything other than 1 (IOT_PORT_SET).
This value determines which zone is required by ipc_object_validate , which we want to be
the ports zone [2]
bit with mask 0x400 must be 0, to indicate the kobject has no label (which would trigger some
extra checks we’d rather avoid) [3]

io_lock_data : 8-byte value at offset 8. must be 0 to indicate no lock is held, otherwise a
deadlock/panic will occur when trying to lock the port [4]

Those are the only requirements to safely receive a send right to the fake port. Some semi-controlled bits
at offset 0, and a zero at offset 8.

For the adjacent ports we leaked before, call the first one A and the second B . Our fake port will reside
at A+0x48

https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_kmsg.c.auto.html#:~:text=ikm_sign%28
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_kmsg.c.auto.html#:~:text=ipc_kmsg_copyout_port_descriptor
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_object.c.auto.html#:~:text=ipc_object_copyout%28
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_object.c.auto.html#:~:text=if%20%28!io_active%28object%29%29,-%7B%0A%09%09%09io_unlock
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_object.c.auto.html#:~:text=if%20%28io_otype%28object%29%20!=%20IOT_PORT_SET%29
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_object.c.auto.html#:~:text=ip_label_check
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_object.c.auto.html#:~:text=io_lock%28object%29%3B,-if%20%28!io_active%28object

io_bits overlaps A->seqno , a sequence number. This value is normally incremented every time a
message is sent to the port, but it can also be manually set with mach_port_set_seqno (this call is no
longer allowed by the sandbox). It is therefore a fully controllable 32-bit value, allowing us to satisfy the
constraints on io_bits .

io_lock_data overlaps port A ’s qcontext , qlimit , and msgcount . qcontext is normally 0.
msgcount is the number of messages currently on the receive queue, which will be 0 if there are none.
qlimit is an upper limit on how many messages can be placed on the receive queue. It defaults to 5,

however can be set to 0 with the MACH_PORT_LIMITS_INFO flavor of mach_port_set_attributes .
Therefore all 3 fields can be 0, satisfying the io_lock_data constraint.

There are likely other misalignments that would work. This one leads to an interesting situation…

The ip_srights field keeps track of the number of send rights that exist for a port. Sending a mach
message with a port descriptor containing a send right increments this field by one. Similarly, sending N
port descriptors with send rights in the same message increments by N.

The ikmq_base field points to the ipc_kmsg at the head of the receive queue. This structure contains
many interesting fields, the one most relevant in this case will be ikm_header , a pointer to the message
body.

Since the fake port’s ip_srights field overlaps B->ikmq_base , we can send port descriptors for the
fake port to increment B->ikmq_base , and likewise receive those port descriptors to decrement/un-
corrupt. This leads to the question of what B->ikmq_base can be incremented to point to, or in other
words, what is normally located after an ipc_kmsg struct.

When sending a message, if the message body is small enough, the body is stored inline after the
ipc_kmsg structure, otherwise it is placed in a separate allocation (this logic is in ipc_kmsg_alloc). If

the message sent to B is such a message, incrementing ikmq_base an appropriate number of times
will point it directly into the inline body, which is fully controlled.

https://blog.ret2.io/assets/img/p2o_2021_eop_fake_port_misalignment.svg
https://developer.apple.com/documentation/kernel/1578744-mach_port_set_seqno/
https://developer.apple.com/documentation/kernel/1578964-mach_port_set_attributes/
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_kmsg.h.auto.html#:~:text=struct%20ipc_kmsg
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_kmsg.c.auto.html#:~:text=max_expanded_size%20%3E%20IKM_SAVED_MSG_SIZE

We now have the ability to fully fake the ipc_kmsg at the head of B ’s receive queue. Specifically, we
will turn control of B->ikmq_base->ikm_header into a constrained arbitrary read.

The general idea is to repeat the following:

1. send a small message to B with the fake ipc_kmsg contents as the body
2. to a separarte helper port, send N send rights to the fake port using port descriptors, incrementing

B->ikmq_base

3. perform some non-destructive operation on B to use the fake ikm_header for a constrained read
4. receive the port descriptors, decrementing B->ikmq_base back to normal
5. receive from B to clear the queue, repeat as needed with a new fake ipc_kmsg

Pseudo-arbitrary Kernel Memory Read

There are 2 methods we can use to leverage a fake ikm_header into a read primitive.

Method 1

The first uses MACH_RCV_LARGE , a flag that can be specified when receiving a mach message. If this
flag is set and the message to be received is larger than the userspace receive buffer size, the kernel
leaves the message queued, and writes out to userspace how much space is required.

The required size is calculated by ipc_kmsg_copyout_size . The calculation is necessary because port
names (32-bit) are converted into their corresponding pointers (64-bit) when copied in from userspace, so
there is a size difference from the perspective of the kernel and that of userspace. The required size is
calculated as ikm_header->msgh_size - 8 , then if the message is complex, additional subtractions
occur for each port descriptor.

For a text (code address) leak, we would like to read out the vtable of the OSData object we leaked a
data pointer to previously. We’ll point ikm_header at OSData - 4 , then attempt to receive the
message with a very small receive buffer, and the MACH_RCV_LARGE option set.

https://blog.ret2.io/assets/img/p2o_2021_eop_kmsg_increment.svg
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/ipc/ipc_kmsg.c.auto.html#:~:text=ipc_kmsg_copyout_size%28

msgh_size overlaps with the low 4 bytes of the vtable. Kernel ASLR doesn’t provide enough entropy to
randomize the high 32 bits of the kernel slide, so we effectively have our text leak.

One constraint here is that the memory before OSData must be mapped, since
ipc_kmsg_copyout_size will check if the message is complex using msgh_bits . The safe thing to

do would be to repeat the leak procedure until a non-page-aligned OSData is found, ensuring OSData-
4 will be mapped.

The second potential issue is we don’t know if msgh_bits will have the complex bit set. If it doesn’t, all
is well. If it does, msgh_descriptor_count (the number of descriptors in the complex message) will
overlap with the OSData capacity. By allocating the OSData with a size of 0, the capacity will likewise
be 0. This will ensure no additional subtractions are performed on msgh_size for port descriptors.

Method 2

The second constrained read method uses mach_port_peek . Previously, we used mach_port_peek
with a corrupted msgh_size to read an out-of-bounds trailer. This time, we control ikm_header
instead. The trailer is read from ikm_header + ikm_header->msgh_size , so we need to ensure there
is an appropriate fake msgh_size . The simplest thing is to find a zero in memory shortly before the
value we wish to read, so the trailer will be copied out directly from the fake ikm_header without
performing an addition.

We’ll use this technique to leak the address of controlled data. We first create a helper port and leak its
address with the old mach_port_peek technique used earlier. We then send a large mach message to
this port, which will allocate the body at the end of virtual memory, at a constant offset from the resource
buffer dbuf0 . Using the pseudo-arbitrary mach_port_peek read, we can then traverse the ipc_port
object to find the message body pointer. Subtracting the proper offset gives us the address of dbuf0 .
This memory is shared between kernel and userspace, so we have a kernel address containing controlled
data.

Arbitrary Function Call Primitive

Armed with a text leak and the address of the shared memory resource buffer, we can proceed to hijack
control flow. We allocate a large OSArray and corrupt an entry to point at the resource buffer.

https://blog.ret2.io/assets/img/p2o_2021_eop_osdata_leak.svg

This gives us control of a fake C++ object, i.e. vtable control.

To initiate a virtual call, we query the corrupted OSArray from its associated IOSurface . The code
first copies the queried value prior to serializing it. In this case, the copy is performed by
OSArray::copyCollection , which calls OSArray::initWithObjects to initialize a new array using

the existing objects. This iterates over the backing store and retains each object (the first of which we’ve
corrupted) through a virtual call to taggedRetain . This gives us an arbitrary function call with a
controlled this argument.

We direct this call to OSSerializer::serialize :

OSSerializer::serialize(OSSerializer* this, OSSerialize* s) {
 return this->callback(this->target, this->ref, s);
}

We now have an arbitrary function call controlling the first two arguments. By directing this call back into
OSSerialize::serialize , we can utilize the s argument to obtain an arbitrary function call with 3

controlled arguments. This method has been used before.

Upon returning from the hijacked taggedRetain call, we will be back in
OSArray::initWithObjects , which will abort the copy if a null entry is encountered in the array. We

use this behavior to bail out cleanly.

With this primitive, arbitrary read/write reduces to calling the copyin and copyout functions.

Kernel Shellcode Execution

From here, getting arbitrary code execution as kernel is relatively simple.

We allocate memory for the shellcode with kmem_alloc_external and copy it in with copyin . There
didn’t seem to be a convenient way to mark this memory rwx with only 3 controlled arguments, so instead
we use vm_map_store_lookup_entry to lookup the vm_map_entry_t associated with the shellcode
memory, which contains the mapping’s permission bits. Overwriting these bits is sufficient to mark the
entry rwx. Finally, we call the shellcode itself.

The shellcode overwrites the kernel version string (viewable with uname -a), unsandboxes the current
process (Apple Safari), and gives it root credentials. If interested, see the exploit source for how this is
done.

Conclusion

The most difficult part of this exploit was probably the need for info leaks, which took the exploit off on a
tangent focused on bypassing the zone_require mitigation for ports. Changes to the sandbox since
Pwn2Own 2021 have prohibited certain function calls that made this technique viable within the Safari
sandbox, although it’s possible to modify the technique slightly to work around these new restrictions.

The vulnerability discussed here was patched in macOS Big Sur 11.4 and assigned CVE-2021-30735.
The exploit code for both the standalone EOP and full chain can be found here on GitHub.

https://blog.ret2.io/assets/img/p2o_2021_eop_osarray_corruption.svg
https://opensource.apple.com/source/xnu/xnu-7195.81.3/libkern/c++/OSArray.cpp.auto.html#:~:text=OSArray::initWithObjects
https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-Vulnerability-Heaven-In-The-IOS-Sandbox.pdf
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/vm/vm_kern.c.auto.html#:~:text=kmem_alloc_external
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/vm/vm_map_store.c.auto.html#:~:text=vm_map_store_lookup_entry
https://opensource.apple.com/source/xnu/xnu-7195.81.3/osfmk/vm/vm_map.h.auto.html#:~:text=vm_map_entry%20{
https://github.com/ret2/Pwn2Own-2021-Safari/blob/main/eop/kernel_sc.c
https://support.apple.com/en-us/HT212529
https://github.com/ret2/Pwn2Own-2021-Safari

GITHUB | TWITTER | BLOG | CONTACT

(C) 2022 RET2 SYSTEMS, INC.

https://github.com/ret2
https://twitter.com/ret2systems
https://blog.ret2.io/
https://ret2.io/contact

