
Guido Vranken

Notes on OpenSSL remote memory corruption

Posted on June 27, 2022 by guidovranken
OpenSSL version 3.0.4, released on June 21th 2022, is susceptible to remote memory corruption which
can be triggered trivially by an attacker. BoringSSL, LibreSSL and the OpenSSL 1.1.1 branch are not
affected. Furthermore, only x64 systems with AVX512 support are affected. The bug is fixed
(https://github.com/openssl/openssl/pull/18626) in the repository but a new release is still
pending.

Somewhat peculiarly, almost nobody is talking about this. If RCE exploitation is possible this makes it
worse than Heartbleed in an isolated severity assessment, though the potential blast radius is limited
by the fact that many people are still using the 1.1.1 tree rather than 3, libssl has forked into LibreSSL
and BoringSSL, the vulnerability has only existed for a week (HB existed for years) and an AVX512-
capable CPU is required.

This post gives some background on how this bug came to be and some notes on its exploitability.

On May 31th 2022 I found and reported an issue with constant-time Montgomery modular
exponentiation in OpenSSL and BoringSSL (but not LibreSSL). For some values of B, E, M for
which B ^ E % M == 0, some functions would return M instead of 0; the result was not fully
reduced.

It was found that there are four distinct code paths affected by this:

RSAZ 1024
(https://github.com/openssl/openssl/blob/b2feb9f0e394da6570346598837f1b01eb58c028/crypto
/bn/bn_exp.c#L668-L669)
RSAZ 512
(https://github.com/openssl/openssl/blob/b2feb9f0e394da6570346598837f1b01eb58c028/crypto
/bn/bn_exp.c#L678)
Dual 1024 RSAZ
(https://github.com/openssl/openssl/blob/b2feb9f0e394da6570346598837f1b01eb58c028/crypto
/bn/bn_exp.c#L1448-L1452)
Default constant-time Montgomery modular exponentiation
(https://github.com/openssl/openssl/blob/b2feb9f0e394da6570346598837f1b01eb58c028/crypto
/bn/bn_exp.c#L687-L1124)

David Benjamin of Google analyzed the issue extensively
(https://boringssl.googlesource.com/boringssl/+/13c9d5c69d04485a7a8840c12185c832026c8315)
and found that the bug does not constitute a security risk (at least not internally; external callers
might end up in incorrect states depending on what they are trying to compute). Interestingly, he also
found an apparent bug in the paper
(https://boringssl.googlesource.com/boringssl/+/801a801024febe1a33add5ddaa719e257d97aba5) by
Shay Gueron upon which the RSAZ code is based.

https://guidovranken.com/
https://guidovranken.com/2022/06/27/notes-on-openssl-remote-memory-corruption/
https://guidovranken.com/author/guidovranken/
https://github.com/openssl/openssl/pull/18626
https://github.com/openssl/openssl/blob/b2feb9f0e394da6570346598837f1b01eb58c028/crypto/bn/bn_exp.c#L668-L669
https://github.com/openssl/openssl/blob/b2feb9f0e394da6570346598837f1b01eb58c028/crypto/bn/bn_exp.c#L678
https://github.com/openssl/openssl/blob/b2feb9f0e394da6570346598837f1b01eb58c028/crypto/bn/bn_exp.c#L1448-L1452
https://github.com/openssl/openssl/blob/b2feb9f0e394da6570346598837f1b01eb58c028/crypto/bn/bn_exp.c#L687-L1124
https://boringssl.googlesource.com/boringssl/+/13c9d5c69d04485a7a8840c12185c832026c8315
https://boringssl.googlesource.com/boringssl/+/801a801024febe1a33add5ddaa719e257d97aba5


This took my fuzzer (https://github.com/guidovranken/cryptofuzz) a long time to find, because the
odds of finding B ^ M % E = 0 for large, N-bit values of B, E, M where those values are semi-
random are small, so I proceeded to add a modular exponentation solver,
(https://github.com/guidovranken/cryptofuzz/blob/dd20f87e98ca92e9e31f8dd9d0a80efb5c249df7/
expmod.cpp) so the bug can now be found quite quickly, and hopefully it helps finding more, similar
bugs in the future (in OpenSSL or elsewhere). (Z3’s performance in solving equations involving
modular exponentiation is quite poor so I had to roll my own).

The fix
(https://github.com/openssl/openssl/commit/10d8a109be0fe50315e4eeb0676f6571914cd47a#diff-
854689acd04b8f1b65120880bebcd98d519e89b601328820f276ec0e5c164c4f) that was applied to the dual
1024 RSAZ code is wrong because the reduction function is called
(https://github.com/openssl/openssl/blob/eea820f3e239a4c11d618741fd5d00a6bc877347/crypto/b
n/rsaz_exp_x2.c#L260-L261) with num set to the bit size, where it should be number of BN_ULONG
elements (which are always 8 bytes large, because that is the size of an unsigned long on x64 systems,
which is the only architecture which can have AVX512 support). So with the input sizes being 1024
bits, 8192 bytes are accessed (read from or written to) instead of 128.

On to the bug internals. There are 5 distinct arrays involved. 3 arrays are overwritten.

Variable Description Allocated
size

Over-
read/write Total Read/write?

res1
modexp result
1 128 896 8192 Read, then

write

m1 Modulus 1 128 896 8192 Read

res2
modexp result
1 128 896 8192 Read, then

write

m2 Modulus 2 128 896 8192 Read

storage Scratch space 1184 7296 8192 Write, then
read

8192 bytes are read from res1, res2, m1, m2 and storage
8192 bytes are written to res1, res2 and storage (this is where the memory corruption takes
place)
If we consider res1_bn to be a bignum comprising res1[0..8192] (where the last byte is the
most significant byte) and m1_bn to be m1[0..8192], then if res1_bn < m1_bn, the contents
of res1[0..8192] will be left unchanged after being overwritten. The same applies for res2
and m2.
This implies that if you can set the most significant bit of m1[8191] to 1 and the most significant
bit of res1[8191] to 0, then res1[0..8192] will retain its original state (and no actual
corruption takes place). This circumstance may occur by chance. The same applies for res2 and
m2.
Conversely, if res1_bn >= m1_bn, then after the write, res1[N] will be one of {res1[N],
res1[N] - m1[N], res1[N] - m1[N] - 1}. The same applies for res2 and m2.
After the overwrites have occurred, storage[N]will be ~(m2[N] - res2[N]) or ~(m2[N] -
res2[N])+1.
From this it follows that if you control m2[N]and res2[N], you mostly control storage[N].
The original contents of storage is never read, so it does not influence the end state in any way.

https://github.com/guidovranken/cryptofuzz
https://github.com/guidovranken/cryptofuzz/blob/dd20f87e98ca92e9e31f8dd9d0a80efb5c249df7/expmod.cpp
https://github.com/openssl/openssl/commit/10d8a109be0fe50315e4eeb0676f6571914cd47a#diff-854689acd04b8f1b65120880bebcd98d519e89b601328820f276ec0e5c164c4f
https://github.com/openssl/openssl/blob/eea820f3e239a4c11d618741fd5d00a6bc877347/crypto/bn/rsaz_exp_x2.c#L260-L261


Summarized:

Variable Post-write value

res1[N] res1[N] or res1[N] - m1[n] or res1[N] - m1[N] - 1

res2[N] res2[N] or res2[N] - m2[n] or res2[N] - m2[N] - 1

storage[N] ~(m2[N] - res2[N]) or ~(m2[N] - res2[N]) + 1
OpenSSL vulnerability post-write states

Each of these lemma’s are true independent of what the inputs to the modexp function are, and of
any other variable or state.

Here is a fuzzer (https://gist.github.com/guidovranken/b1c46bd9e42e959519009681b261a896)
which demonstrates these invariants.

The (wrapping) subtraction mechanics at play here are interesting because you can use them to apply
pointer delta’s to a function pointer to make it point to a different function and this can help
circumvent ASLR (https://en.wikipedia.org/wiki/Address_space_layout_randomization), because
while the function addresses are randomized, their spacing is constant for every given binary.

For example, if:

a single, particular BN_ULONG in the res1 array is known to contain an active pointer to a specific
function
and you can control the BN_ULONG in m1 at the same index (for example via heap spraying)
and the rest of the state is completely unknown and uncontrolled

then by setting m1[N] to oldfunc - newfunc, the original function pointer will be exactly
newfunc after the overflow with a 25% probability:

https://gist.github.com/guidovranken/b1c46bd9e42e959519009681b261a896
https://en.wikipedia.org/wiki/Address_space_layout_randomization


OpenSSL makes heavy use of function pointers. Running find -name '.c' -exec grep
'METH. = {' {} \; | grep -v test from the repository root shows over 130 data structures
that encapsulate a set of function pointers. Delta subtraction may be useful in exploiting this
circumstance to make OpenSSL misbehave to varying degrees of severity.

Apart from code execution, there can also be scenario’s where private data is leaked to the attacker.

Assume:

R¹ = res[I..J]
M¹ = m[I..J]
I, K >= 128
J, L <= 1023

Let R¹ be an allocated space which the attacker can read and write (for example an internal TLS state
whose value is, to an extent, determined by how the attacker conducts the handshake, and which can
be read, to an extent, by how the TLS code subsequently behaves based on its state).

Let M¹ contain some kind of secret information.

Recall that the combination of res[N] (before the overwrite) and m[N] leaks into res[N]. It follows
that if the attacker has read-write access to R¹, M¹ can be partially or completely inferred.

This is what I’ve deduced so far. It’s possible there are errors in this post; please e-mail
guido@guidovranken.com (mailto:guido@guidovranken.com) and I’ll correct them and credit you.
You can follow me on Twitter (https://twitter.com/GuidoVranken).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

void goodfunc(void) { printf("good\n"); }
void badfunc(void) { printf("bad\n"); }
int main(void)
{
    /* Indices 0..127 are within allocated bounds */
    /* Beyond that is either unallocated or allocated by different pa
     * of the program.
     */
    struct {
        BN_ULONG storage[1024], res1[1024], m1[1024], res2[1024], m2[
    } vars;
 
    /* Randomize everything; not known to the attacker */
    FILE* fp = fopen("/dev/urandom", "rb");
    assert(fread(&vars, 1, sizeof(vars), fp));
    fclose(fp);
 
    /* Assume res1[345] contains a function pointer used internally b
    vars.res1[345] = (BN_ULONG)(&goodfunc);
    /* Assume we control m1[345] */
    vars.m1[345] = (BN_ULONG)(&goodfunc) - (BN_ULONG)(&badfunc);
 
    bn_reduce_once_in_place(vars.res1, /*carry=*/0, vars.m1, vars.sto
    bn_reduce_once_in_place(vars.res2, /*carry=*/0, vars.m2, vars.sto
 
    void (*fnptr)(void) = (void*)vars.res1[345];
    fnptr(); /* good or bad? */
    return 0;
}

mailto:guido@guidovranken.com
https://twitter.com/GuidoVranken


This site uses Akismet to reduce spam. Learn how your comment data is processed.

Blog at WordPress.com.

https://akismet.com/privacy/
https://wordpress.com/?ref=footer_blog

