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Abstract. We present an efficient key recovery attack on the Supersingular

Isogeny Diffie–Hellman protocol (SIDH), based on a “glue-and-split” theorem
due to Kani. Our attack exploits the existence of a small non-scalar endomor-

phism on the starting curve, and it also relies on the auxiliary torsion point

information that Alice and Bob share during the protocol. Our Magma im-
plementation breaks the instantiation SIKEp434, which aims at security level 1

of the Post-Quantum Cryptography standardization process currently ran by
NIST, in about one hour on a single core. This is a preliminary version of a

longer article in preparation.

1. Set-up

We present a new and powerful key recovery attack on the Supersingular Isogeny
Diffie–Hellman key exchange protocol (SIDH) [16] and its instantiation SIKE [15]
that recently advanced to the fourth round of NIST’s ongoing Post-Quantum Cryp-
tography standardization process. It is based on a “glue-and-split” theorem from
1997 due to Ernst Kani [17, Thm. 2.6] and heavily outperforms previous attack
strategies, such as the ones discussed in [21], [7, §5], [9].

We target Bob’s private key, which is obtained by pushing 2a-torsion points
through a secret 3b-isogeny. This case allows for the easiest and fastest implemen-
tation, but the method can also be used to recover Alice’s key, and more generally
works for arbitrary choices for ℓAlice and ℓBob instead of just ℓAlice = 2 and ℓBob = 3.
The attack also generalizes to arbitrary (smooth and coprime) torsion choices for
Alice and Bob, as used in for example B-SIDH [5]. Ran on a single core, the ap-
pended Magma code breaks the Microsoft SIKE challenges $IKEp182 and $IKEp217

in about 4 minutes and 6 minutes, respectively. A run on the SIKEp434 parame-
ters, previously believed to meet NIST’s quantum security level 1, took about 62
minutes, again on a single core. We also ran the code on random instances of
SIKEp503 (level 2), SIKEp610 (level 3) and SIKEp751 (level 5), which took about
2h19m, 8h15m and 20h37m, respectively.

Concretely, we present an algorithm which, upon input of

(i) a prime p of the form 2a3bf − 1 for integers a ≥ 2, b, f ≥ 1 with 2a ≈ 3b,
(ii) an elliptic curve E0/Fp2 with #E0(Fp2) = (p+ 1)2,
(iii) generators P0, Q0 of E0[2

a],
(iv) a 3β-isogeny τ : E0 → Estart for some β ≥ 0, where

Estart : y
2 = x3 + x or Estart : y

2 = x3 + 6x2 + x
1
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is one of the two commonly chosen base curves in SIDH/SIKE, with re-
spective j-invariants 1728 and 287496,

(v) the codomain E/Fp2 of a secret cyclic 3b-isogeny φ : E0 → E,
(vi) the generators P = φ(P0) and Q = φ(Q0) of E[2a],

returns the isogeny φ; for simplicity we assume that φ is uniquely determined,
which is true with overwhelming probability. A note on input (iv): when attacking
SIKE, at the initial stage we will have β = 0 and E0 = Estart, so the reader can
keep this setting in mind for now. But our attack will involve a recursion during
which the value of β will grow, whence this more general formulation. Moreover,
we will also need to cope with larger values of β when discussing other base curves
E0 than these two standard choices (see Section 8.2).

Modulo the factorization of polynomially many natural numbers of size O(2a),
which only depend on a and b and can therefore be handled during a precomputation
phase, the attack runs in heuristic polynomial time (on a classical computer) and,
as the reader can tell from the above timings, is very efficient in practice. The
heuristics behind this complexity claim will be discussed in the full version of our
article.

In light of the work by Kohel–Lauter–Petit–Tignol [18] and Love–Boneh [20], all
known ways to generate a supersingular base curve E0/Fp2 in a trustless manner
reveal an isogeny of the form (iv). Therefore, with the current state of affairs, SIDH
appears to be fully broken for any publicly generated base curve. At first sight,
it seems possible to thwart our attack by using a trusted set-up, or by having the
base curve generated by Alice, as suggested in [6, §8] (in the threat model of SIKE,
there is no incentive for Alice to mess up with this procedure, and she will learn
Bob’s ephemeral key in any case). However, as explained in Section 8.3, even in the
absence of a known path to Estart, the glue-and-split method has attack potential
that may lower the security. This should be investigated further before jumping to
conclusions.

Acknowledgements. We thank Craig Costello and Frederik Vercauteren for help-
ful questions and suggestions, and we have also benefited indirectly from discussions
with Luciano Maino.1 We acknowledge support by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No. 101020788 – Adv-ERC-ISOCRYPT) and also by
CyberSecurity Research Flanders with reference number VR20192203.

2. Decision via gluing and splitting

For the moment, let us concentrate on a decision variant: we assume to be given
(i), (ii), (iii) and an elliptic curve E/Fp2 satisfying #E(Fp2) = (p+1)2, along with
generators P,Q of E[2a]. The goal is to decide whether or not

(1) there exists a 3b-isogeny φ : E0 → E such that φ(P0) = P and φ(Q0) = Q.

2.1. Temporary assumptions. We impose two technical conditions that will be
discussed in more detail later on:

• We suppose that 2a > 3b.

1In fact, right before posting this paper online, we learned that Luciano Maino and Chloe
Martindale are currently pursuing related ideas.
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• Let c = 2a − 3b. We assume that we can compute the images Pc = γ(P0)
and Qc = γ(Q0) under an arbitrary cyclic c-isogeny γ : E0 → C to some
codomain curve C.

Let x ∈ Z be a multiplicative inverse of 3b modulo 2a. Note that −x is then a
multiplicative inverse of c modulo 2a.

2.2. Kani’s theorem. If (1) holds then we can consider the isogeny

ψ = [−1] ◦ φ ◦ γ̂ : C → E,

where we note that ψ(Pc) = −cP and ψ(Qc) = −cQ. For all R,S ∈ C[2a] we have
that

e2a(xψ(R), xψ(S)) = e2a(R,S)
x2c3b = e2a(R,S)

−1

or in other words the group homomorphism

[x] ◦ ψ|C[2a] : C[2
a] → E[2a]

is a so-called “anti-isometry” with respect to the 2a-Weil pairing. This implies that
the group

(2) ⟨(Pc, xψ(Pc)), (Qc, xψ(Qc))⟩ = ⟨(Pc,−xcP ), (Qc,−xcQ)⟩ = ⟨(Pc, P ), (Qc, Q)⟩
is maximally isotropic with respect to the 2a-Weil pairing on the product C × E
(equipped with the product polarization). Indeed, the Weil pairing on C × E is
just the product of the Weil pairings of the corresponding components.

So it concerns the kernel of a (2a, 2a)-isogeny, i.e., a length-a chain of (2, 2)-
isogenies. This is a walk in the (2, 2)-isogeny graph of superspecial principally
polarized abelian surfaces over Fp, all of whose vertices are defined over Fp2 . These
vertices come in two types: about p2/288 products of supersingular elliptic curves
and about p3/2880 Jacobians of superspecial genus-2 curves, see e.g. [1]. Therefore
it is to be expected that most isogenies in the chain are between Jacobians of genus-
2 curves, and such isogenies can be computed efficiently using classical formulae due
to Richelot [22]. But the first step is clearly an exception to this: with overwhelming
probability, this is a “gluing” step, mapping the product C×E to a Jacobian (more
precisely, by Theorem 1 below this can only fail if C ∼= E). Formulae for this gluing
step were derived in [14] and are recalled in Section 6.

What is the role of the isogeny γ in all this? Its aim is to force us into the excep-
tional situation where the last step of the chain is split, i.e., the codomain of our
(2a, 2a)-isogeny is again a product of elliptic curves. In that case the anti-isometry
xψ|C[2a] and the group (2) are called “reducible”. This event is characterized by
the theorem of Kani [17, Thm. 2.6]:

Definition 1. Let C,E be two elliptic curves and N ≥ 2 an integer. Let ψ : C → E
be a separable isogeny and letH1, H2 ⊂ kerψ be subgroups such thatH1∩H2 = {0},
#H1 ·#H2 = degψ and #H1 +#H2 = N . Then the triplet (ψ,H1, H2) is called
an isogeny diamond configuration of order N between C and E.

Theorem 1. Let (ψ,H1, H2) be an isogeny diamond configuration of order N ≥ 2
between two elliptic curves C and E. Let d = gcd(#H1,#H2), let n = N/d and
let ki = #Hi/d for i = 1, 2. Then ψ factors uniquely over [d], i.e. ψ = ψ′ ◦ [d] and
there is a unique reducible anti-isometry ι : C[N ] → E[N ] such that

(3) ι(k1R1 + k2R2) = ψ′(R2 −R1) for all Ri ∈ [n]−1Hi (i = 1, 2).

Moreover, every reducible anti-isometry C[N ] → E[N ] is of this form.
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In our case, the kernel of ψ is a cyclic group of order c3b, so it admits two
(unique) cyclic subgroups H1, H2 of respective orders c and 3b. We clearly have
that H1 ∩H2 = {0} and

#H1 +#H2 = 2a, #H1 ·#H2 = degψ,

so the triplet (ψ,H1, H2) is an isogeny diamond configuration of order 2a. Then
Kani’s theorem implies that our anti-isometry xψ|C[2a] is reducible. Indeed, let us
check condition (3) explicitly: we need to verify that

xψ(cR1 + 3bR2) = ψ(R2 −R1)

for all points R1, R2 such that 2aR1 ∈ H1 and 2aR2 ∈ H2 (note that d = 1 in our
case). But this is easy: since ψ(R1) and ψ(R2) are 2

a-torsion points, we can rewrite
the left hand side as

xcψ(R1)+x3
bψ(R2) = 3−b(2a−3b)ψ(R1)+3−b3bψ(R2) = ψ(R2)−ψ(R1) = ψ(S−R1)

as wanted.

2.3. Decision strategy. Our decision strategy amounts to testing whether or not
quotienting out C×E by (2) takes us to a product of elliptic curves. As we have just
argued, if (1) holds, then we pass the test. For now, we content ourselves with the

loose heuristic that if (1) does not hold, then the test should fail with overwhelming
probability because the proportion of products of elliptic curves among all vertices
in the graph is only about 10/p. We can actually be more precise about this heuristic
in the cases that are relevant for our attack, namely the “wrong guesses” in our
search-to-decision reduction from Section 4; this uses the converse implication in
Kani’s theorem and will be elaborated in the full version of our article.

3. Constructing and evaluating the auxiliary isogeny γ

3.1. Construction. The assumption that we can (efficiently) compute the image
points Pc and Qc under a degree-c isogeny is non-trivial, and this is where we need
the factorization of an integer of size O(2a). It is also here that we rely on the special
nature of Estart: both options come with an endomorphism 2i satisfying (2i)2 = −4.
Indeed, on Estart : y

2 = x3 + x we have the automorphism i : (x, y) 7→ (−x,
√
−1y)

and we simply let 2i = [2] ◦ i. For Estart : y
2 = x3 + 6x2 + x we can obtain 2i as

the composition of its outgoing 2-isogeny to y2 = x3 + x, the automorphism i on
the latter curve, and the dual of the said 2-isogeny.

There is a reasonable chance that the prime factorization of c only involves prime
factors that are congruent to 1 mod 4; this chance is roughly 1/

√
a. As far as we

are aware, the only known way to find out is by factoring c explicitly. Once this
factorization is done and all prime factors are indeed congruent to 1 mod 4, we can
efficiently write c = u2 + 4v2 = (u+ 2iv)(u− 2iv). Then

γstart = [u] + [v] ◦ 2i
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is an easy-to-evaluate degree-c endomorphism of Estart. Moreover, we can choose
u, v such that this endomorphism is cyclic; this is automatic in the (likely) event
that c is squarefree.

Remark 1. The method for finding u and v is classical: e.g., in the squarefree case,
one computes ∏

primes ℓ|c

gcd(zℓ + i, ℓ)

using Euclid’s algorithm over the Gaussian integers; here zℓ is any integer such that
z2ℓ ≡ −1 mod ℓ. The outcome is among ±(u+ 2iv),±i(u+ 2iv).

Then in order to find γ, we use the isogeny τ from input (iv). Let τ̃ : Estart → C
be the isogeny with kernel γstart(τ(E0[3

β ])) = γstart(ker τ̂). Then τ̃ ◦ γstart ◦ τ :
E0 → C is a 32βc-isogeny vanishing on E0[3

β ], so it factors over [3β ] and we can let

γ =
τ̃ ◦ γstart ◦ τ

3β
.

It remains to see that γ is easy to evaluate on our 2a-torsion points P0 and Q0. For
this, we first discuss a special case.

3.2. Evaluation: case β ≤ b. This is the only relevant case when attacking SIDH
with base curve E0 = Estart, as in the case of SIKE: while β will grow during
our search-to-decision reduction, it will never grow beyond b. But then we always
have that ker τ̂ ⊂ E0[3

b] ⊂ E(Fp2). So we can explicitly write down a generator
T ∈ E0(Fp2) of ker τ̂ and compute the isogeny τ̃ with kernel ⟨γstart(T )⟩. Evaluating
γ in our 2a-torsion points P0 and Q0 is then simply done by feeding them to
τ̃ ◦ γstart ◦ τ and scalar-multiplying the outcome with a multiplicative inverse of 3β

modulo 2a. (In fact, this evaluation will naturally simplify in the context of our
search-to-decision reduction below.)

3.3. Evaluation: general case. If β > b then we cannot simply evaluate γstart
in a generator of ker τ̂ , unless we base change to a potentially very large and costly
extension of Fp2 . But note that the isogeny τ̃ is precisely the pushforward isogeny
[γstart]∗τ̂ that was studied in [8, §4]. This suggests the following alternative method
for computing τ̃ , which we will discuss in more detail in the full version of this
article. Note that the specific choice of Estart comes with an explicit isomorphism

ι : End(Estart) → Ostart

where Ostart is a maximal order in the quaternion algebra Bp,∞ = ⟨1, i, j, ij⟩Q with
i2 = −1 and j2 = −p. Then:

(1) First, one converts the isogeny τ̂ : Estart → E0 into a left ideal Iτ̂ ⊂ Ostart

of norm 3β , e.g. following [12, Alg. 3]. In fact, in the main use cases of
this general method, a large component of the isogeny τ̂ will arise from its
corresponding left Ostart-ideal; so in those cases this step can be simplified.

(2) Next, one computes the left ideal Iτ̃ = [(ι(γstart))]∗Iτ̂ using the formula
from [8, Lem. 3]; this ideal again has norm 3β .

(3) Finally, one converts the ideal Iτ̃ into a length-β chain of 3-isogenies em-
anating from Estart, e.g. using [12, Alg. 2]. Then τ̃ is the composition of
these 3-isogenies.

Then, here too, evaluating γ in P0 and Q0 is done by applying τ̃ ◦ γstart ◦ τ and
scalar-multiplying with an inverse of 3β modulo 2a.
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Remark 2. There are many other candidate-ways for constructing the isogeny γ.
Just to give one similar example, decompositions of the form c = u2 + 3v2 are
useful as soon as one knows an explicit path to y2 = x3 + 1, because this curve
comes equipped with an endomorphism ω such that ω2 = −3. A different type
of example is the case where c is very smooth: in that case one can construct the
desired c-isogeny γ : E0 → C as a composition of small degree isogenies without
knowing a path to some special-featured curve; see Section 8.3 for further discussion.
Unfortunately/fortunately, this event is unlikely.

4. Key recovery algorithm: basic version

We resume with the set-up from Section 1. The previous sections suggest the
following iterative approach to full key recovery. We assume for simplicity that
β = 0, so that the base curve E0 coincides with Estart. Recall that this is the
case in SIKE. In the general case, one should just replace the maps κ̂1 : E1 → E0,
κ̂2κ1 : E2 → E0, . . . below with their compositions with τ .

4.1. Iteration. For the first iteration, choose β1 ≥ 1 minimal such that there exists
some α1 ≥ 0 for which

c1 = 2a−α1 − 3b−β1

is positive and only has prime factors congruent to 1 mod 4. Write φ = φ1 ◦ κ1
with κ1 a 3β1 -isogeny. To an attacker, there are a priori 3β1 options for κ1 (this
assumes knowledge of an “incoming isogeny”, otherwise there are 4 ·3β1−1 options).
For each of these options, we can run our decision algorithm on

(ii) the curve E1 = κ1(E0),
(iii) the generators P1 = κ1(2

α1P0) and Q1 = κ1(2
α1Q0) of E1[2

a−α1 ],
(iv) the 3β1-isogeny κ̂1 : E1 → E0,
(v) the codomain E; if the guess is correct then it is connected to E1 via the

unknown isogeny φ1 of degree 3b−β1 ,
(vi) the generators 2α1P, 2α1Q of E[2a−α1 ]

where the numbering (ii)-(vi) is chosen to be consistent with that of Section 1.
According to our heuristic assumption discussed at the end of Section 2, we expect
that only the correct guess for κ1 will pass the test.

Let us discuss in more detail what “running the test” amounts to in this case.
First, one must compute the images Pc1 , Qc1 of P1, Q1 under the isogeny

γ1 =
˜̂κ1 ◦ γstart ◦ κ̂1

3β1

where ˜̂κ1 : Estart → C1 is the isogeny with kernel γstart(kerκ1). Observe that this
simplifies: all one should do is compute

(4) Pc1 = 2α1 ˜̂κ1γstart(P0), Qc1 = 2α1 ˜̂κ1γstart(Q0).

Once these points have been computed, one checks whether the quotient of C1 ×E
by the (2a−α1 , 2a−α1)-subgroup

(5) ⟨(Pc1 , 2
α1P ), (Qc1 , 2

α1Q)⟩

is again a product of elliptic curves. This is done by computing the corresponding
chain of (2, 2)-isogenies. With overwhelming probability, the first a− α1 − 1 steps
in this chain amount to one gluing step followed by a − α1 − 2 Richelot isogenies
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between Jacobians of genus-2 curves. An easy “δ = 0 test” then checks whether or
not the last step splits. See Section 6 for more algorithmic details.

If the test fails, then we try again with a different guess for κ1. We remark
that, even in the case of a wrong guess, the subgroup (5) is always maximally
isotropic with respect to the Weil pairing, so this is not the way in which one can
detect having taken the wrong direction: one really has to perform the gluing and
its successive Richelot walk. (The failure of detecting wrong steps using the Weil
pairing is well-known, see e.g. [13, §7.2]; with some imagination, our attack can be
viewed as a refinement of this approach.)

If the test passes, then we have found the correct instance of κ1 and we continue
from E1. That is, we let β2 > β1 be minimal such that there is some α2 ≥ 0 for
which c2 = 2a−α2 − 3b−β2 is positive and all its prime factors are congruent to 1
mod 4. Now one tries to recover the 3β2−β1-component κ2 : E1 → E2 such that
φ1 = φ2 ◦ κ2. In this case, for each guess for κ2 one computes

Pc2 = 2α2˜̂κ2κ1γstart(P0), Qc2 = 2α2˜̂κ2κ1γstart(Q0)

with ˜̂κ2κ1 : Estart → C2 the isogeny with kernel γstart(kerκ2κ1). One then checks
whether

⟨(Pc2 , 2
α2P ), (Qc2 , 2

α2Q)⟩ ⊂ C2 × E

is reducible or not. By continuing in this way, one eventually retrieves all of φ.

4.2. Step sizes. The gaps between the consecutive integers 0, β1, β2, β3, . . . , βr = b
should be as small as possible, because this reduces the number of possible guesses
in each iteration. More concretely, the expected number of (2, 2)-chains that need
to be computed is about

(6)
1

2

(
3β1 + 3β2−β1 + 3β3−β2 + . . .+ 3b−βr−1

)
.

A necessary condition on each βi is that b− βi is odd, except in the last iteration
where we have βr = b. Indeed, if b− βi > 0 is even then

ci = 2a−αi − 3b−βi ≡ 3 mod 4

must admit at least one prime factor that is congruent to 3 mod 4. Therefore the
best we can hope is that the sequence grows by steps of two, in which case the
estimate (6) becomes about 9b/4. Experiment shows that this optimal estimate
lies close to reality, with the only exceptions corresponding to small βi. This makes
sense: as βi grows, the amount of leeway (i.e., the number of candidate αi’s) grows
as well, and moreover the probability of success increases as ci is allowed to get
smaller. Example: for the parameters of SIKEp434 where we have a = 216 and
b = 137, one quickly finds suitable αi for every even βi in {0, 1, . . . , b} \ {4}.

4.3. Rephrasing in terms of Bob’s secret key. In practice, SIDH comes with
public generators PBob, QBob of E0[3

b] and Bob’s secret isogeny φ is encoded as the
integer

skBob ∈ [0, 3b)

for which kerφ = ⟨PBob + skBobQBob⟩. Upon expanding

skBob = k1 + k23
β1 + . . .+ kr3

βr−1 , ki ∈ [0, 3βi−βi−1 − 1)

(where we let β0 = 0), we observe that

(7) kerκ1 = ⟨3b−β1PBob + k13
b−β1QBob⟩.
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So the first iteration amounts to

• guessing k1,
• determining the 3β1 -isogeny ˜̂κ1 : Estart → C1 with kernel γstart(kerκ1),
with kerκ1 as in (7),

• computing the points Pc1 , Qc1 ∈ C1 as in (4),
• checking whether or not the subgroup (5) is reducible.

After finding k1, we proceed with

kerκ2 = ⟨3b−β2PBob + (k1 + k23
β1)3b−β2QBob⟩

in order to determine k2, and so on. So the attack determines skBob digit by digit.
If all the gaps are of size two, then this amounts to determining one base-9 digit of
skBob at a time.

5. Some speed-ups

5.1. Take αi as large as possible. If for a given βi there indeed exists some
αi ≥ 0 such that ci = 2a−αi − 3b−βi is positive and free of prime factors congruent
to 3 mod 4, then usually αi is not the unique integer with that property, so there
is some freedom. The larger we choose αi, the smaller will be the length a− αi of
our chain of (2, 2)-isogenies. Therefore, it is more efficient to take larger αi’s.

5.2. Use a precomputed table. We have precomputed a table which for all
s ∈ {1, 3, 5, . . . , 239} stores the smallest integer t(s) such that 2t(s)−3s is a product
of primes congruent to 1 modulo 4. It also stores corresponding values for u and v.
The table is available as uvtable.m and can be used as follows: for every candidate-
βi such that b − βi is odd, one checks whether or not t(b − βi) ≤ a. If not, then
we proceed to the next candidate. If yes, then we can use this instance of βi, and
we choose a− t(b− βi) as a corresponding value for αi. This makes sure that αi is
as large as possible, and moreover we have u, v readily available, without the need
for factoring. Our table is sufficiently large to be used for each of the proposed
parameter sets for SIKE, up to SIKEp751 targeting NIST’s security level 5.

5.3. Extend Bob’s secret isogeny where useful. Imagine that some candidate-
βi does not admit an integer αi ≥ 0 such that 2a−αi − 3b−βi is a product of primes
congruent to 1 mod 4 (e.g., because b − βi > 0 is even). But imagine that βi − 1
does. Then one can prolong Bob’s secret isogeny with an arbitrary 3-isogeny φ′

and let P ′ = φ′(P ) and Q′ = φ′(Q). Treating φ′ ◦ φ as the new secret isogeny, the
relevant expression now becomes 2a−αi − 3b+1−βi , and we know that there exists
some αi ≥ 0 for which this is a product of primes congruent to 1 mod 4. We can
now use our attack to determine Bob’s secret key modulo 3βi and proceed.

In practice, this means that most step sizes drop from 2 to 1, or in other words
that we are determining one base-3 digit of skBob at a time. The only possibly
larger step occurs at the beginning of the iteration. For instance, in the case of
SIKEp751, the smallest β1 such that 2a − 3b−β1 > 0 is β1 = 6, so we cannot hope
for a smaller first gap. This implies a rather costly start of the algorithm: of the
20.6 hours that we spent on breaking SIKEp751, about 14 hours were needed for
determining the first 6 out of 239 ternary digits of skBob.

Remark 3. If 2a is considerably smaller than 3b, then it probably makes more sense
to attack Alice’s private key instead of Bob’s, using chains of (3, 3)-isogenies; see
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Section 8.1. Of course, if 2a gets much smaller than 3b, then one enters the regime
of the torsion-point attack from [9].

Remark 4. There is a 1/4 probability that the random isogeny φ′ matches with the
dual of the last degree-3 component of φ. In this case, the wrong guesses are also
at distance 3b−βi from E, so this creates false positives, leaving us clueless about
which is the correct guess. However, this is easy to fix: if multiple guesses pass the
test, then all one needs to do is change φ′, and then we have identified the dual
direction once and for all. If this happens, then it will be discovered when trying
to determine the ternary digit at position β2 = β1 +1 (and this does not affect the
correctness of the first β1 digits, as these were determined without the use of φ′).

6. Computing chains of (2,2)-isogenies

In this section we explain how to determine whether or not a (2a, 2a)-subgroup
⟨(Pc, P ), (Qc, Q)⟩ of a product of elliptic curves C × E is reducible. Throughout,
we avoid dealing with certain exceptional cases, e.g. every genus-2 curve H : y2 =
h(x) = c6x

6+c5x
5+ . . .+c0 encountered is assumed to satisfy c6 ̸= 0, so that it has

two places ∞1,∞2 at infinity, and all points on its Jacobian JH that we deal with
are assumed to be representable as (α1, β1) + (α2, β2) − ∞1 − ∞2 with α1 ̸= α2,
so that they have a Mumford representation of the form [x2 + u1x+ u0, v1x+ v0].
Moreover, all our chains of (2, 2)-isogenies are assumed to start off by gluing C×E
into a Jacobian, after which we never run into a product of elliptic curves again,
except possibly at the a-th and last step. The exceptions to these assumptions
are expected to occur with probability O(p−1), so we see no need to discuss nor
implement them.

6.1. Gluing elliptic curves into a Jacobian. In the first step we want to
glue the curves C and E into the Jacobian of a genus-2 curve H via the (2, 2)-
subgroup ⟨(2a−1Pc, 2

a−1P ), (2a−1Qc, 2
a−1Q)⟩. We also need to push the points

(Pc, P ), (Qc, Q) through the corresponding isogeny. The relevant equations are as
follows. We refer to [14, Prop. 4] and its proof for further details.

Proposition 1. Let C/K : y2 = (x − α1)(x − α2)(x − α3) and E : y2 = (x −
β1)(x− β2)(x− β3) be elliptic curves over a field K of characteristic different from
two. Write ∆α for the discriminant of (x − α1)(x − α2)(x − α3) and ∆β for the
discriminant of (x− β1)(x− β2)(x− β3). Furthermore, define

a1 = (α3 − α2)
2/(β3 − β2) + (α2 − α1)

2/(β2 − β1) + (α1 − α3)
2/(β1 − β3),

b1 = (β3 − β2)
2/(α3 − α2) + (β2 − β1)

2/(α2 − α1) + (β1 − β3)
2/(α1 − α3),

a2 = α1(β3 − β2) + α2(β1 − β3) + α3(β2 − β1),

b2 = β1(α3 − α2) + β2(α1 − α3) + β3(α2 − α1),

A = ∆βa1/a2, B = ∆αb1/b2,

h(x) = −
(
A(α2 − α1)(α1 − α3)x

2 +B(β2 − β1)(β1 − β3)
)

·
(
A(α3 − α2)(α2 − α1)x

2 +B(β3 − β2)(β2 − β1)
)

·
(
A(α1 − α3)(α3 − α2)x

2 +B(β1 − β3)(β3 − β2)
)
.

Then the (2, 2)-isogeny with domain C × E and kernel〈
((α1, 0), (β1, 0)), ((α2, 0), (β2, 0))

〉
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has as codomain the Jacobian of a genus-2 curve H defined by y2 = h(x). The
degree-2 morphisms of the dual isogeny are given by

φ1 : H → C

(x, y) 7→ (s1/x
2 + s2, (∆β/A

3)(y/x3)),

φ2 : H → E

(x, y) 7→ (t1x
2 + t2, (∆α/B

3)y),

where

s1 = −(B/A)(a2/a1),

s2 =
1

a1

(
α1(α3 − α2)

2

β3 − β2
+
α2(α1 − α3)

2

β1 − β3
+
α3(α2 − α1)

2

β2 − β1

)
,

t1 = −(A/B)(b2/b1),

t2 =
1

b1

(
β1(β3 − β2)

2

α3 − α2
+
β2(β1 − β3)

2

α1 − α3
+
β3(β2 − β1)

2

α2 − α1

)
.

The morphisms φi extend to the Jacobian JH by mapping[∑
j

Pj

]
→
∑
j

φ(Pj)

and they combine into a (2, 2)-isogeny Φ : JH → C × E, the dual of which is our
isogeny of interest. To compute the image of a point (Pc, P ) ∈ C × E under this
dual isogeny, it suffices to compute some [D] ∈ Φ−1{(Pc, P )} ⊂ JH and then double
it. Indeed, then we have

2[D] = Φ̂Φ([D]) = Φ̂(Pc, P )

as wanted.
Let D = PH+QH−∞1−∞2 represent a point on JH . As mentioned, we assume

that its Mumford representation is of the form [x2 + u1x+ u0, v1x+ v0]. To avoid
the need for field extensions, let us express φi(PH + QH) for i = 1, 2 directly in
terms of u0, u1, v0, v1. Note that the divisor ∞1 +∞2 maps to ∞, both under φ1

and under φ2, so it suffices to concentrate on PH +QH .
The calculation is easiest for φ2, where the line connecting φ2(PH) and φ2(QH)

has slope

λ2 = − (∆α/B
3)v1

t1u1
and then φ2(PH +QH) is

(8)

(
λ22 +

3∑
i=1

βi − t1(u
2
1 − 2u0)− 2t2 , −λ2

(
· · · − t2 + (u0v1 − u1v0)

t1
v1

))
with · · · denoting a copy of the first coordinate. To derive formulae for φ1, note
that this map is of a very similar kind, except for the transformation

·̃ : (x, y) 7→ (1/x, y/x3)

by which it is preceded. Let ũ0, ũ1, ṽ0, ṽ1 be the Mumford coordinates of P̃H + Q̃H ,
then an easy calculation shows:

ũ0 =
1

u0
, ũ1 =

u1
u0
, ṽ0 =

u1v0 − u0v1
u20

, ṽ1 =
u21v0 − u0v0 − u0u1v1

u20
.
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Thus the formulae for the coordinates of φ1(PH+QH) are the same as in (8), except
for swapping the αi’s and the βi’s and for substituting ũ0, ũ1, ṽ0, ṽ1 for u0, u1, v0, v1.

This gives us 4 equations in the unknowns u0, u1, v0, v1:

(9)


x(φ1(PH +QH)) = x(Pc),
y(φ1(PH +QH)) = y(Pc),
x(φ2(PH +QH)) = x(P ),
y(φ2(PH +QH)) = y(P ).

Together with the equation

2v20 − 2v0v1u1 + v21(u
2
1 − 2u0) = 2c0 + (−u1)c1 + (u21 − 2u0)c2

+ (−u31 + 3u0u1)c3 + (u41 − 4u21u0 + 2u20)c4

+ (−u51 + 5u31u0 − 5u1u
2
0)c5

+ (u61 − 6u41u0 + 9u21u
2
0 − 2u30)c6,

expressing that [D] ∈ JH , this system is expected to have 4 solutions, all of which
are defined over Fp2 . (In practice, we found these solutions by clearing denominators
in (9), running a Gröbner basis computation, and discarding solutions having zeroes
among their coordinates, because they are most likely fake solutions that were
created when clearing denominators.) Taking any of these solutions and doubling
the corresponding point on JH produces the desired image of (Pc, P ).

6.2. Richelot isogenies. By assumption, the next a− 2 steps are (2, 2)-isogenies
between Jacobians of genus-2 curves. Such maps are called Richelot isogenies and
they are classical; for a contemporary exposition, including explicit formulae, we
refer to Smith’s thesis [22, Ch. 8]. Starting from a hyperelliptic curve H : y2 = h(x)
and a (2, 2)-subgroup〈

[g1(x), 0], [g2(x), 0]
〉
, g1(x) = x2 + g11x+ g10, g2(x) = x2 + g21x+ g20

of its Jacobian, one lets g3(x) = h(x)/(g1(x)g2(x)) = g32x
2 + g31x+ g30. One then

computes

δ = det

g10 g11 1
g20 g21 1
g30 g31 g32


and h′(x) = g′1(x)g

′
2(x)g

′
3(x) where

g′i(x) = δ−1

(
dgj
dx

gk − gj
dgk
dx

)
for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2).

Then the codomain of our Richelot isogeny is the Jacobian of H ′ : y2 = h′(x).
We use different notation for the coordinates because pushing a point through this
isogeny is done via the “Richelot correspondence”, which is the curve X ⊂ H ×H ′

defined by

X : g1(x)g
′
1(x) + g2(x)g

′
2(x) = yy − g1(x)g

′
1(x)(x− x) = 0.

It naturally comes equipped with two projection maps π : X → H, π′ : X → H ′.
The isogeny is then

JH → JH′ : [D] 7→ [π′
∗π

∗D] (pullback along π and pushforward along π′).
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This means that in order to compute the image of a point [x2+u1x+u0, v1x+v0] ∈
JH , one should eliminate the variables x, y from the system

x2 + u1x+ u0 = 0,
y = v1x+ v0,
y2 = h(x),
g1(x)g

′
1(x) + g2(x)g

′
2(x) = 0,

yy = g1(x)g
′
1(x)(x− x).

We expect the last two equations of its reduced Gröbner basis (with respect to the
lexicographic order with x ≺ y ≺ y ≺ x) to be of the form

y = v′3x
3 + v′2x

2 + v′1x+ v′0, x4 + u′3x
3 + u′2x

2 + u′1x+ u′0 = 0

and then [x4 + u′3x
3 + u′2x

2 + u′1x + u′0, v
′
3x

3 + v′2x
2 + v′1x + v′0] are non-reduced

Mumford coordinates for the image on JH′ .

6.3. Split or not? We now want to check whether or not the a-th (2, 2)-isogeny
takes us back to a product of elliptic curves. This is easy: we proceed as if we are
dealing with a Richelot isogeny (just the codomain computation, no points need
be pushed through anymore). It can be shown that the determinant δ vanishes if
and only if the codomain is a product of elliptic curves instead of the Jacobian of
a genus-2 curve. Therefore the final and deciding step in our computation simply
amounts to verifying whether or not δ = 0.

7. Magma code

This paper comes with the following Magma files. They are available at https:
//homes.esat.kuleuven.be/~wcastryc:

• richelot_aux.m contains auxiliary functions, mainly for computing chains
of (2, 2)-isogenies, where the functions FromProdtoJac and FromJactoJac

are implementations of the methods described in Section 6,
• uvtable.m contains precomputed values of u and v as described in Sec-
tion 5.2,

• a run of SIKE_challenge.m loads the first two files and breaks $IKEp217
by running the algorithm from Section 4, incorporating the speed-ups from
Section 5,

• a run of SIKEp434.m generates random input for the SIKEp434 parameters
and runs the algorithm from Section 4, again incorporating the speed-
ups from Section 5; to attack SIKEp503, SIKEp610 and SIKEp751 one
simply replaces the line a := 216; b := 137; by a := 250; b := 159;,
a := 305; b := 192;, a := 372; b := 239;, respectively.

The reader can run these files in order to confirm the approximate timings men-
tioned in Section 1. We ran them on an Intel Xeon CPU E5-2630v2 at 2.60GHz.

8. Generalizations

8.1. Arbitrary torsion. There is no theoretical obstruction to attacking Alice’s
public key instead of Bob’s. In this case one will end up computing a chain of (3, 3)-
isogenies, which is slightly more convoluted, but still doable using the machinery
from [2]; see also [11]. The formulae are still practical and recovering Alice’s private
key can then be done bit ber bit (except possibly for some offset of the kind discussed
in Section 5.3). Altogether, we expect having to compute approximately a chains

https://homes.esat.kuleuven.be/~wcastryc
https://homes.esat.kuleuven.be/~wcastryc
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of (3, 3)-isogenies of length at most b in order to retrieve Alice’s private key. The
expression ∆ in the formulae from [2] plays a similar role as δ in the Richelot
isogeny formulae, in the sense that ∆ = 0 occurs if and only if the codomain of
the (3, 3)-isogeny is the product of two elliptic curves, see [3]. Therefore, verifying
whether the final (3, 3)-isogeny splits is just as easy.

More generally, one can attack SIDH when set up using arbitrary small primes
ℓAlice, ℓBob instead of just 2, 3, or even more general smooth torsion as in B-SIDH.
Inherently, this changes nothing to our attack, except that now one must compute
(ℓ, ℓ)-isogenies for primes ℓ ≥ 5. For isogenies between Jacobians of genus-2 curves,
we refer to the work of Cosset and Robert [4], whose formulae are a lot more involved
than those to compute (2, 2)- and (3, 3)-isogenies, but they are polynomial in ℓ and
likely practical enough to complete the attack. The gluing of elliptic curves and
splitting of Jacobians is succinctly explained by Kuhn in [19]; for a more elaborate
and practical exposition, see also [10, §1.4]. Away from ℓ = 2, 3 we are not aware of
a straightforward decision algorithm to verify whether an (ℓ, ℓ)-subgroup of a given
Jacobian of a genus-2 curve results in a product of elliptic curves: the easiest way
seems to try and compute an (ℓ, ℓ)-isogeny to a Jacobian as in [4] and see if the theta
constants fail to create a genus-2 curve. Alternatively, one can write down a system
of equations expressing that our Jacobian is “(ℓ, ℓ)-split” (i.e., (ℓ, ℓ)-isogenous to a
product of elliptic curves) via our given subgroup, and verify whether this system
is consistent, see [10].

8.2. Other base curves with a known path to Estart. All current instantia-
tions of SIDH/SIKE have as base curve E0 = Estart, where

Estart : y
2 = x3 + x or Estart : y

2 = x3 + 6x2 + x

is one of the two options listed in Section 1. However, with the currently known
methods for generating supersingular elliptic curves, every publicly generated al-
terative to E0 comes with a known path to Estart, in view of the work of Love and
Boneh [20]. The KLPT algorithm from [18] can convert this path into an isogeny
τ : E0 → Estart of degree 3β for some β ≥ 0. Thus we are in business for running
our glue-and-split attack, where the auxiliary isogenies γ should now be evaluated
as explained in Section 3.3. In conclusion, using another publicly generated base
curve does not thwart the attack.

8.3. Base curves without a known path to Estart. We now discuss the scenario
where no path to Estart is known. As indicated in Remark 2, if c = 2a−3b is smooth
then it remains possible to construct the auxiliary isogeny γ. In fact, if we no longer
exploit special features of E0, then it makes more sense to let γ emanate from E
rather than E0, leading us to considering γ ◦ φ : E0 → C. This isogeny has degree
c3b and can again be used to decide whether or not assumption (1) holds: this
should be the case if and only if the subgroup ⟨(P0, xγ(P )), (Q0, xγ(Q))⟩ ⊂ E0 ×C
is reducible, with x a multiplicative inverse of 3b modulo 2a.

Remark 5. Computing γ works as follows. Write c as a product of small primes
ℓ1ℓ2 · · · ℓs and for each i = 1, . . . , s let ri denote the multiplicative order of −p
modulo ℓi. Because p2-Frobenius acts as [−p], we can find a non-trivial point in
E0[ℓ1] ⊂ E0(Fp2r1 ) and the subgroup it generates is defined over Fp2 . So this is
the kernel of an Fp2-rational degree-ℓ1 isogeny γ1 : E0 → C1 that can be computed
and evaluated using formulae of Vélu type. By repeating this construction, we
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eventually obtain γ as a composition γs ◦ γs−1 ◦ . . . ◦ γ1 where each γi is an Fp2 -
rational ℓi-isogeny.

Turning this decision method into a key recovery algorithm works along the lines
of Section 4. First, we look for the smallest β ≥ 1 for which there exists an integer
α ≥ 0 such that

(10) c = 2a−α − 3b−β

is smooth (this is an optimistic goal!). Then, for each guess for the first degree-3β-
component κ1 of φ, we run our test to see whether or not there exists a degree-
3b−β-isogeny κ1(E0) → E mapping 2ακ1(P0) to 2αP and 2ακ1(Q0) to 2αQ. There
are 3β possible guesses, so clearly β should be small enough for this to be feasible.

Once κ1 is found, we can proceed by steps of degree 3 as in Section 5.3. Since
smoothness is such a rare event, it actually makes sense to recycle the expres-
sion (10) all along. Then we can also recycle our auxiliary isogeny γ, i.e., it only
has to be computed once, including pushing through torsion points. Concretely:
when guessing κ2, we extend γ with an extra degree-3 isogeny φ′ : C → E′ and we
test if we took the right direction by checking whether or not there is a degree c3b−β-
isogeny mapping 2ακ2κ1(P0) to 2αφ′γ(P ) and 2ακ2κ1(Q0) to 2αφ′γ(Q). Iterating
this process will recreate the entire isogeny chain.

In summary: as soon as we can find a small β ≥ 1 with a corresponding α ≥ 0
such that (10) is smooth, then our attack applies. The likeliness of finding a smooth
c of this form is very small, so this is not expected to lead to a practical attack,
but it might lower the security level of certain parameter sets. Moreover, there are
at least two ways to create more leeway:

• We can extend Bob’s secret isogeny φ : E0 → E by an arbitrary isogeny
ε : E → F of some smooth degree e and work with ε ◦φ instead of φ. This
allows us to look for a smooth integer of the form c = 2a−α − e3b−β and
construct a corresponding degree-c isogeny γ : F → C.

• A second tweak can be obtained by any algorithm that can efficiently solve
the following problem for a fixed d:

– Let H/Fp2 be a genus-2 curve with superspecial Jacobian J , and d > 1
an integer. Is there a (d, d)-isogeny Ψ : J → A such that A is a product
of elliptic curves?

Indeed, this allows us to work with expressions of the form c = d2a−α −
e3b−β . Each test then amounts to computing a (2a−α, 2a−α)-isogeny, using
the torsion point data as before, and then checking if the resulting Jacobian
is (d, d)-split. Verifying whether a given Jacobian is (d, d)-split is likely to
be most efficient by means of a computation similar to those in [10, 19].

E.g., consider a = 110 and b = 67 as in $IKEp217, along with the identity

59 · 67 · 107 · 4432 · 487 · 1049 · 2711 · 8297 = 109 · 2110−35 − 119 · 367−20.

Assuming that we do not know a path from E0 to Estart, we could still try to recover
Bob’s key by computing

• one-time isogenies E
ε−→ F

γ−→ C, dominated in cost by a 2711-isogeny
and a 8297-isogeny over extension fields of respective degrees 1355 and 8297,

• computing all 320-isogenous neighbours of the base curve, gluing them to-
gether by means of a (275, 275)-isogeny and checking which one of the re-
sulting Jacobians is (109, 109)-split.
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The second step immediately reveals the first 20 ternary digits of Bob’s secret key
and we can then easily find the remaining digits as explained above.
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