
When we think about V8 exploits, the first things that come to mind are probably

related to sophisticated browser zero-day exploit chains. While the browser may be

the most interesting target for V8 exploits, we shouldn’t forget that this open-

source JavaScript engine is also embedded into countless projects other than the

browser. And where a JavaScript engine is used across a security boundary to exe‐

cute potentially untrusted code, security issues may arise.

One such issue affected the massively popular Dota 2 video game. Dota used an

outdated build of v8.dll that was compiled in December 2018. It’s no surprise

that this build was vulnerable to a range of CVEs, many of them even being known

exploited vulnerabilities with public proof-of-concept (PoC) exploits. We discov‐

ered that one of these vulnerabilities, CVE-2021-38003, was exploited in the wild in

four custom game modes published within the game. Since V8 was not sandboxed

in Dota, the exploit on its own allowed for remote code execution against other

Dota players.

We disclosed our findings to the developer of Dota 2, Valve. In response, Valve

pushed an update for Dota on January 12, upgrading the old and vulnerable version

of V8. This update took effect immediately, since Dota has to be up to date for play‐

ers to participate in online games. Valve also took additional action, by taking down

the offending custom game modes, notifying the affected players, and introducing

new mitigations to reduce the game’s attack surface.

Dota 2 Under Attack: How a V8
Bug Was Exploited in the Game

by Jan Vojtěšek

https://v8.dev/
https://www.dota2.com/home
https://www.virustotal.com/gui/file/213de7940496257896292647a499858f4f3ab0fab65fabad1b9e6ac075e16bc6
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://bugs.chromium.org/p/chromium/issues/detail?id=1263462
https://www.valvesoftware.com/en/
https://decoded.avast.io/author/janvojtesek/


Background

Dota 2 is a MOBA game that was initially released on July 9, 2013. Despite being

almost 10 years old (or perhaps 20 if counting the original Dota 1), it is still attract‐

ing a large player base of around 15 million active monthly players. Like other popu‐

lar games, Dota is a complex piece of software under the hood, assembled from

multiple separate components. One component that will be of particular interest to

us is the Panorama framework. This is a framework designed by Valve itself to en‐

able user interface development using the well-known web triad of HTML, CSS, and

JavaScript. The JavaScript part here was problematic because it got executed by

the vulnerable version of V8. Thus, malicious JavaScript could exploit a V8 vulnera‐

bility and gain control over the victim’s machine. This wouldn’t be such an issue for

the unmodified game, because by default, only legitimate Valve-authored scripts

should get executed. However, Dota is very open to customization by the player

community, which opens the doors for threat actors to attempt to sneak malicious

pieces of JavaScript to their unsuspecting victims.

Customization of Dota can take many forms: There are custom wearable in-game

items, announcer packs, loading screens, chat emoticons, and more. Crucially, there

are also custom community-developed game modes. These are essentially brand-

new games that leverage Dota’s powerful game engine to allow anyone with a bit

of programming experience to implement their ideas for a game. Custom game

modes play an important role in Dota, and Valve is well aware of the benefits of let‐

ting players express their creativity by developing custom game modes. After all,

Dota itself started out as a game mode for Warcraft III: The Frozen Throne. This

might be why game modes can be installed with a single click from within the

game. As a result, there are thousands of game modes available, some of which are

extremely popular. For instance, DOTA AUTO CHESS was played by over 10 million

players.

Dota changelog for the January 12 update.

https://developer.valvesoftware.com/wiki/Dota_2_Workshop_Tools/Panorama
https://steamcommunity.com/sharedfiles/filedetails/?id=1613886175
https://www.dota2.com/news/updates


Before a game mode can be played by regular players, it must be published on the

Steam store. The publishing process includes a verification performed by Valve.

While this could potentially weed out some malicious game modes, no verification

process is perfect. As we’ll show later, at least four malicious game modes man‐

aged to slip through. We believe the verification process exists mostly for modera‐

tion reasons to prevent inappropriate content from getting published. There are

many ways to hide a backdoor within a game mode, and it would be very time-con‐

suming to attempt to detect them all during verification.

The main game logic of custom game modes is coded in Lua. This is executed on

the game server, which can either be the host player’s machine or a dedicated

server owned by Valve. For client-side scripting, there is JavaScript from the

Panorama framework. This is mainly used to control user interface elements, such

as scoreboards or quest status bars. JavaScript is executed by the V8 engine, and

there’s full support for many advanced features, including WebAssembly execution.

In addition, there’s also a Dota-specific API that exposes additional functionality.

Particularly interesting was the $.AsyncWebRequest function, which, in combina‐

tion with eval, could have been used to backdoor a game mode so that it could ex‐

ecute arbitrary additional JavaScript code downloaded from the internet. Perhaps it

was this concern that caused the $.AsyncWebRequest function to be deprecated

and eventually removed altogether. However, there are ways around this. For in‐

stance, the web request can be made by the server-side Lua code, with the re‐

sponse passed to the client-side JavaScript using game event messaging APIs.

Just Testing

We discovered four malicious custom game modes published on the Steam store,

all developed by the same author. The first game mode (id 1556548695) is particu‐

larly interesting, as it appears that it is where the attacker only tested the exploit,

judging from the lack of an actual payload attached to it. Interestingly enough, the

attacker also used this game mode to test various other techniques, leaving in com‐

mented-out code or unused functions. This offered us a great opportunity to under‐

stand the attacker’s thought process.

https://store.steampowered.com/
https://developer.valvesoftware.com/wiki/Dota_2_Workshop_Tools/Panorama/Javascript/API


As can be seen in the above screenshot, the attacker was very transparent about

the nature of this game mode, naming it test addon plz ignore and even go‐

ing as far as using the description to urge other players not to download this game

mode. While this might seem like an expression of good faith, we’ll show shortly

that in the other three malicious game modes, the same attacker took the exact op‐

posite approach and tried to make the malicious code as stealthy as possible. 

The JavaScript exploit in this custom game mode can be found inside over‐

throw_scoreboard.vjs_c. This used to be a legitimate JavaScript file implement‐

ing scoreboard functionality, but the attacker replaced its content with an exploit for

CVE-2021-38003. This vulnerability was originally discovered as a zero-day by

Google researchers Clément Lecigne and Samuel Groß, when it was used in the

wild in an exploit chain against a fully-patched Samsung phone. 

There are now public PoCs and write-ups for this CVE. However, these weren’t

available in March 2022, when the attacker last updated the game mode. This

The Steam page of the custom game mode where the attacker tested the exploit.

https://chromereleases.googleblog.com/2021/10/stable-channel-update-for-desktop_28.html
https://blog.google/threat-analysis-group/protecting-android-users-from-0-day-attacks/
https://github.com/star-sg/CVE/blob/master/CVE-2021-38003/pwn.js
https://starlabs.sg/blog/2022/12-the-hole-new-world-how-a-small-leak-will-sink-a-great-browser-cve-2021-38003/
https://github.com/star-sg/CVE/blob/master/CVE-2021-38003/pwn.js
https://starlabs.sg/blog/2022/12-the-hole-new-world-how-a-small-leak-will-sink-a-great-browser-cve-2021-38003/


means they had to develop a large portion of the exploit themselves (even if there

was a public PoC at that time, the attacker would still need to possess some techni‐

cal skills to backport it to the outdated V8 build that Dota was using). Even so, the

core of the exploit was provided in the Chromium bug tracker entry for the CVE.

There is a snippet of code that can trigger the vulnerability to leak the purportedly

inaccessible TheHole object and then use this leaked object to corrupt the size of a

map. The attacker took this snippet and pasted it into their exploit, building up the

rest of the exploit on top of this corrupted map.

Interestingly, the exploit contains a large amount of commented-out code and de‐

bug prints. This further suggests that the attacker had to put a lot of effort into

weaponizing the vulnerability. The attacker-developed part of the exploit starts by

using the corrupted map to corrupt the length of an array, achieving a relative

read/write primitive. Then, it corrupts an ArrayBuffer backing store pointer in or‐

der to gain an arbitrary read/write primitive. There is no addrof function, as ad‐

dresses are leaked by placing the target object at a known offset from the corrupt‐

ed array and then using the relative read primitive. Finally, with the arbitrary

read/write in place, the exploit uses a well-known WebAssembly trick to execute

The core of the exploit that triggers CVE-2021-38003 to leak TheHole object.

Note the yay! at the end — that’s simply an expression of joy and it’s in no

way necessary for the exploit to work.

https://bugs.chromium.org/p/chromium/issues/detail?id=1263462
https://medium.com/numen-cyber-labs/from-leaking-thehole-to-chrome-renderer-rce-183dcb6f3078
https://bugs.chromium.org/p/chromium/issues/detail?id=1263462
https://medium.com/numen-cyber-labs/from-leaking-thehole-to-chrome-renderer-rce-183dcb6f3078
https://faraz.faith/2019-12-13-starctf-oob-v8-indepth/#:~:text=Use%20WebAssembly%20to%20create%20an%20RWX%20page
https://faraz.faith/2019-12-13-starctf-oob-v8-indepth/#:~:text=Use%20WebAssembly%20to%20create%20an%20RWX%20page


custom shellcode. We have tested the whole exploit locally against Dota and can

confirm that it worked. 

Apart from this JavaScript exploit, the custom game mode also contains another in‐

teresting file, which is ominously named evil.lua. This is where the attacker test‐

ed the capabilities of the server-side Lua execution. See the Lua snippet below

where the attacker tested the following in particular:

• Logging

• Dynamic compilation of additional Lua code (loadstring)

• Determining the exact version of the Lua interpreter

• Executing arbitrary system commands (whoami)

• Coroutine creation

• Network connectivity (HTTP GET requests)

A JavaScript snippet taken from the exploit. Note the debug prints, comments, and commented-out code.



Unfortunately, we do not have access to the full update history of this particular

game mode. Therefore, it’s possible that some interesting code from previous ver‐

sions is no longer present in the version that we analyzed. We can at least see from

the changelog that there were nine updates to this game mode, all of them happen‐

ing either in November 2018 or March 2022. Since the exploited JavaScript vulnera‐

bility was only discovered in 2021, we assume that the game mode initially started

out as a legitimate game and that the malicious functionality was only added in the

March 2022 updates.

The Backdoor

After discovering this first malicious game mode, we were of course wondering

whether there are more such exploits out there. Since the attacker did not bother re‐

porting the vulnerability to Valve, we found it likely that they would have malicious

intentions and attempt to exploit it at a larger scale. As a result, we developed a

script that downloaded all the JavaScript files from all the custom game modes

A Lua snippet taken from evil.lua.



published on the Steam store. This yielded us gigabytes of JavaScript that we could

query for suspicious code patterns. 

It didn’t take long to discover three more malicious game modes, all by the same

author (who also happened to be the author of the previously analyzed test ad‐

don plz ignore game mode). These game modes were named Overdog no

annoying heroes (id 2776998052), Custom Hero Brawl (id 2780728794), and

Overthrow RTZ Edition X10 XP (id 2780559339). Interestingly, the same au‐

thor also published a fifth game mode named Brawl in Petah Tiqwa (id

1590547173), which did not include any malicious code (to our great surprise).

The malicious code in these new three game modes is much more subtle. There is

no file named evil.lua nor any JavaScript exploit directly visible in the source

code. Instead, there’s just a simple backdoor consisting of only about twenty lines of

code. This backdoor can execute arbitrary JavaScript downloaded via HTTP, giving

the attacker not only the ability to hide the exploit code, but also the ability to up‐

date it at their discretion without having to update the entire custom game mode

(and going through the risky game mode verification process).

The Steam page of one of the backdoored custom game modes.



The backdoor starts with the JavaScript code sending a custom ClientReady

event to the server. This is to signal to the server that there is a new victim game

client, waiting to receive the JavaScript payload. The Lua code on the server regis‐

tered a listener for the ClientReady event. When it receives this event, it makes an

HTTP GET request to its C&C server to fetch the JavaScript payload. This payload is

expected in the response body, and it’s forwarded to the client-side JavaScript in a

custom event named test.

When the client-side JavaScript receives this test event, it unwraps the payload,

dynamically creates a new function out of it, and immediately executes it. On a high

level, this is clearly just a simple downloader capable of executing arbitrary

JavaScript downloaded from the C&C server. The cooperation of client-side

JavaScript and server-side Lua code was only necessary because JavaScript was

no longer allowed to directly access the internet.

At the time that we discovered this backdoor, the C&C server was no longer re‐

sponding. Even so, we can confidently assume that this backdoor was intended to

download the JavaScript exploit for CVE-2021-38003. This is because all three

backdoored game modes were updated by the same author within 10 days after

said author introduced the JavaScript exploit into their first malicious game mode.

The Lua part of the backdoor, which is executed on the game server.

The JavaScript part of the backdoor, which is executed on the game clients.



However, we remain unsure about whether there was any malicious shellcode at‐

tached to the exploit. After all, the use of ngrok for C&C is slightly unconventional

and could suggest that the attacker only tested the backdoor functionality. One way

or another, we can say that this attack was not very large in scale. According to

Valve, under 200 players were affected.

Parting Thoughts

After discovering the four malicious game modes, we tried to hunt for more — un‐

fortunately, our trail went cold. Therefore, it’s not clear what the attacker’s ultimate

intentions were. However, we believe that they were not exactly pure research in‐

tentions, for two main reasons. First, the attacker did not report the vulnerability to

Valve (which would generally be considered a nice thing to do). Second, the attack‐

er tried to hide the exploit in a stealthy backdoor. Regardless, it’s also possible that

the attacker didn’t have purely malicious intentions either, since such an attacker

could arguably abuse this vulnerability with a much larger impact.

For example, a malicious attacker could attempt to take over a popular custom

game mode. Many game modes are neglected by their original developers, so the

attacker could try something as simple as promising to fix bugs and continue devel‐

opment for free. After some number of legitimate updates, the attacker could try to

sneak in the JavaScript backdoor. Since game modes are updated automatically in

the background, the unsuspecting victim players would not have a lot of opportuni‐

ties to defend themselves.

Alternatively, the attacker could search for other ways to exploit the vulnerability

without involving any custom game modes. For instance, the attacker could try to

look for a separate XSS vulnerability to chain with the V8 exploit. Such an XSS vul‐

nerability could allow the attacker to execute arbitrary JavaScript within the remote

victim’s Panorama instance. The V8 exploit could then be used to break out of the

Panorama framework. Note that Panorama is also heavily used in the game’s main

menu, so depending on the nature of the XSS vulnerability, this could have a blast

radius as big as the 15 million monthly players.

Before we sign off, we would like to thank Valve for quickly addressing our reports.

We hope that they will continue updating V8 in the future and reduce the patch gap

as much as possible. Valve also shared with us some plans about additional mitiga‐

tions, and we will be most excited to see those implemented in practice. Due to the

potential impact, we would also recommend very careful vetting of future updates

for popular custom games.

https://ngrok.com/
https://ngrok.com/


We can also appreciate that Valve made the decision to publish custom game

modes on Steam even though it might put more responsibility on their shoulders.

Ultimately, this is a net positive for the overall players’ security, due to the fact that

Valve can moderate the published game modes and take down malicious ones.

Many other games don’t have such integrated support for custom games, so play‐

ers resort to downloading mods from random third-party sites, which are often

known to bundle malware.

Indicators of Compromise (IoCs)

SHA-256 Name

cca585b896017b‐

d87038fd34a7f50a1e0f64b6d6767b

cde66ea3f98d6dd4bfd0

overthrow_scoreboard.vjs_c

4fad709e74345c39a85ce5a2c7f3b7

1d755240d27dd46688‐

fa3993298056cf39

evil.lua

3c00f15d233a3d‐

d851d68ecb8c7de38b1abf59787643

a2159c9d6a7454f9c3b7

overthrow_scoreboard.vjs_c

880a0722a5f47d950170c5f66550e1

cde‐

f60e4e84c0ce1014e2d6d7ad1b15c1

4

addon_game_mode.lua

85635bd92cc59354f48f8c39c6d‐

b7a5f93cabfb543e0bc‐

c3ec9e600f228f2569

overthrow_scoreboard.vjs_c

44c79f185576e1ec7d0d7909e‐

b7d4815cbf8348f37f62c0deb‐

d0d5056fb1100b

addon_game_mode.lua

4d3c6986b924108911709b95cb4c37

9720c323e6f7b3a069b866b76e0e3e

c6b5

overthrow_scoreboard.vjs_c



2023 Copyright © Avast Software s.r.o.

4bb1d6dcb1e12c3e5997b8dc7fa3d‐

b45d44bade39cfcceab56f90134‐

ca2d09f3

addon_game_mode.lua


