Downtown Doug Brown

Thoughts from a combined
Apple/Linux/Windows geek.

Home

About

Mac ROM SIMMs
Software
Microcontroller lessons
Contact

Jan
25

The invalid 68030 instruction that
accidentally allowed the Mac Classic 11 to
successfully boot up

Doug Brown Classic Mac, Reverse engineering 2025-01-25

This is the story of how Apple made a mistake in the ROM of the
Macintosh Classic II that probably should have prevented it from
booting, but instead, miraculously, its Motorola MC68030 CPU
accidentally prevented a crash and saved the day by executing an
undefined instruction.

https://www.downtowndougbrown.com/
https://www.downtowndougbrown.com/
https://www.downtowndougbrown.com/about/
https://www.downtowndougbrown.com/programmable-mac-rom-simms/
https://www.downtowndougbrown.com/software/
https://www.downtowndougbrown.com/microcontroller-lessons/
https://www.downtowndougbrown.com/contact/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/category/classic-mac/
https://www.downtowndougbrown.com/category/reverse-engineering/

I’ve been playing around with MAME a lot lately. If you haven’t
heard of MAME, it’s an emulator that 1s known best for its support
of many arcade games. It’s so much more than that, though! It is
also arguably the most complete emulator of 68000-based Mac
models, thanks in large part to Arbee‘s incredible efforts. I will
admit that I’ve used MAME to play a game or two of Teenage
Mutant Ninja Turtles: Turtles in Time, but my main use for it is Mac
emulation.

Here’s how this adventure begins. I had been fixing some issues in
MAME with the command + power key combination that invokes
the debugger, and decided to see if the keystroke also worked on the
Classic II. Even though this Mac model has a physical interrupt
button on the side, it also has an “Egret” 68HC05 microcontroller
for handling the keyboard and mouse (among other things) that
should be able to detect the keypress and signal a non-maskable
interrupt to the main CPU. I believe the Egret disables this
keystroke by default, but MacsBug contains code that sends the
command to enable it.

I didn’t get very far while testing the command+power shortcut in
MAME’s emulated Classic II, because I observed something very
odd. It booted up totally fine in 24-bit addressing mode, but I could
not get it to boot at all if I enabled 32-bit addressing, which I needed
in order for MacsBug to load. It would just pop up a Sad Mac,
complete with the Chimes of Death. On this machine, the death
chime 1s a few notes from the Twilight Zone theme song.

https://www.mamedev.org/
https://rbelmont.mameworld.info/
https://en.wikipedia.org/wiki/Teenage_Mutant_Ninja_Turtles:_Turtles_in_Time
https://en.wikipedia.org/wiki/Teenage_Mutant_Ninja_Turtles:_Turtles_in_Time
https://github.com/mamedev/mame/commit/178e9fee20c508ca3c1125c2f211c43c8c848f6e
https://github.com/mamedev/mame/commit/178e9fee20c508ca3c1125c2f211c43c8c848f6e
https://github.com/mamedev/mame/commit/178e9fee20c508ca3c1125c2f211c43c8c848f6e
https://en.wikipedia.org/wiki/MacsBug
https://en.wikipedia.org/wiki/Macintosh_startup#Sad_Mac
https://en.wikipedia.org/wiki/Macintosh_startup#Chimes_of_Death

#M Macintosh Classic Il [macclas2] - MAME 0.272 (LLP&4) — O .

If you’re not familiar with Apple’s whole 24-bit versus 32-bit
addressing saga, I’ll briefly summarize it for you here. The original
Motorola 68000 processor only had 24 address lines even though it
used 32 bits internally for addresses. Apple took those eight extra
otherwise unused bits and repurposed them for storing flags as a
way to save on RAM, which was scarce at the time. When newer
machines/processors came out that supported a full 32-bit address
space, the upper byte couldn’t be used for flags anymore. Because
of that discrepancy, old software would have been incompatible, so
newer machines had two modes: 24-bit mode for compatibility with

older software, and 32-bit mode for being able to use all of your
RAM.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-29.png
https://en.wikipedia.org/wiki/Classic_Mac_OS_memory_management#32-bit_clean
https://en.wikipedia.org/wiki/Classic_Mac_OS_memory_management#32-bit_clean

So why was the Classic II failing to boot in 32-bit mode in MAME?
What was broken? Arbee also reproduced the i1ssue, so at least I
knew I wasn’t losing my mind. I assumed it was a random bug in
MAME, so I started looking deeper into it to try to understand what
needed to be fixed.

According to an old Apple Tech Info Library article, 0000000F
means an exception occurred and 00000001 means the exception
was a bus error. A bus error on 68k Macs typically means that
something tried to access an invalid address, like 1f you try to read
from or write to an expansion card when there 1sn’t one installed.

What was the invalid address being accessed? I decided to step
through the code using MAME’s amazing debugger to understand
what was leading to the crash. Comprehending what’s going on in
the ROM with no context at all can be tricky, but luckily, Apple
included symbol maps for a bunch of Mac ROMs with Macintosh
Programmer’s Workshop (MPW). MPW was Apple’s development
environment.

Tracing backwards from the actual Sad Mac screen would be
difficult, because there is a ton of code involved in setting up and
displaying the screen. To make it easier on myself, I decided I
would set a breakpoint on the bus error handler and then look
backwards from there. The 68030°s vector table starts at the very
beginning of the address space, and the bus error vector is at
0x00000008. With the Sad Mac error still on the screen, here’s what
memory looked like at that location:

http://absurdengineering.org/library/MASTER%20Tech%20Info%20Library/Hardware%20Troubleshooting%20&%20Service%20Issues/TIL07748%20-%20Macintosh%20-%20Sad%20Mac%20Error%20Code%20Meaning%20(11-95).pdf
https://en.wikipedia.org/wiki/Macintosh_Programmer%27s_Workshop
https://en.wikipedia.org/wiki/Macintosh_Programmer%27s_Workshop

M Memory: Motorola MCB2030 :maincpu’ program space memaory

Debug Options

b

|D Motorola MCEB030 " :maincpu’ program § -
CO000000 40410000 40410000 404A026F0 404A026F2 @dj..42j..8 &DE &b ~
Coo00010 404026F4 404A026F6 404A026F8 404026FA A &R &5@ &ed &uU
Qo000020 402026FC 4084026FE 40409980 40402702 @ Log & e,
Q0000030 40802704 40402704 40402704 40402704 a '.a'.a‘'.a’".
00000040 40402704 40402704 40402704 40402704 a '.a'.a‘'.@a’".
Q0000050 40402704 40402704 40402704 40402704 a‘'.a'.a "'.@ ".
Q0000060 40402704 40409860 40409840 40A09B2A a '.a .'@ .@g ,*
Q0000070 404809620 40409802 40409800 40402704 a.a..a..a'’
Q0000080 40402704 40402704 40402704 40402704 a‘'.a'.a"'.a@"’ W
aTaTaTatatatslnl AMAmT TN AMAMTTNA AMAMTTMNA AMAMAT T A ' & ' & L | -

This meant the bus error handler was at 0x40A026F0, which is also
known as GenExcps in the ROM map. I performed a hard reset of
the emulated machine, set a breakpoint on that address, and then
waited until it hit the breakpoint. It looks like GenExcps 1s a big list
of BSR instructions that all jump to 0x40A026A0, which is
common error handling code identified in the ROM map as
ToDeepShit. Nice name, Apple!

M Debug: macclas? - Motorola MCE8030 ":rnaincpu’ et
Debug Options Media Settings
cycles 14 » | 40AD26F0 bsr 540a026a0 61AE A
beamsx 626 40A026F2 bsr 540a026a0 G1AC
beamy 130 40A026F4 bsr 540a026a0 GlAA
frame 428 40A026F6 bsr 540a026a0 GlAS
flags ..5.00.. N... 40A026F8 bsr 540a026a0 GlAG
————————————————————————————— 40A026FA bsr 540a026a0 olAd
PC 40A026F0 40A026FC bsr 540a026a0 6lAaz
SR 2008 A0A026FE bsr 540a026a0 G1A0D
5P O00OFCoe0 40A02700 bsr 540a026a0 Gl9E
UsP 7o001107 40402702 bsr 540a026a0 619C
ISP O000OFCeeOD 40402704 bsr 540a026a0 G19A W
MSP QOQ00000 ANANT TR e CANaNTIEaN F1af
DO 00000022 < >

0l 00000C30
02 40416500
D3 FFFFFFF&
04 00300022
D5 00000000
D& O0OFFFFC
D7 00030011
AD 40443BDE
Al FFFFBFEA
A2 FFFF73D4
A3 40A10ABA
A4 40A09AES
A5 QOOFCE70
Al OOOFCAEOD

MAME debugger version 0,272 (mame0272-427-g9b9l4ftbfes2-dirty)
Currently targeting macclas2 (Macintosh Classic II)

=ppszet 40a026T0

Breakpoint 1 set

Stopped at breakpoint 1

A7 O0DOFCBEOD hd

Anyway, since MAME hit my breakpoint, this meant Apple’s
technote was correct about it being a bus error. I was able to use the
MAME debugger’s history command to show a backtrace of

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-26.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-32.png

instructions that led to this point. The end of the history output is
displayed in the bottom pane of the screenshot below:

2 Debug: macclas? - Motorola MCE3030 :rnaincpu’ >
Debug Options Media Settings
cycles 14 » | 40AD26F0 bsr §40a026al G1AE A
heamx 626 40A026F2 bsr 540a026a0 6laC
heamy 190 40A026F4 bsr 540a026a0 B1AaA
frame 428 A0DAD26FG bsr 540a026a0 G1AB
flags ..5......... M. .. 40A026F8 bsr 540a026a0 GlAG
————————————————————————————— 40A026FA bsr 540a026al B1A4
PC 404026F0 40A026FC bsr 540a026a0 61AZ
SR 2008 40A0Z26FE bsr 540a026a0 561Aa0
5P 0O0OFCee0 A0A02700 bsr 540a026a0 819E
Usp 7FoO001107 40402702 bsr 540a026al 519C
ISP OO0OFCE6E0 40402704 bsr 540a026al 5194 v
MSP DDDDDDDD ANANT TN e CAMNaNTIEan R1aR
DO 00000022 < ¥
gé gg?fggég 40A43B58: movea.l (5110,A0), A0 ~
B ccrrrrc 40843B5C: clr.1 (522,400
- R 10A43B60: clr.1 (5le,A0)
05 00000000 40A43B64: lea (572,PC) ; (%40a43bds), AD
40443668 move. 1 AD, 5dB0.w
D& OOOFFFFC 40A43B6C: add.w DO, DO
D7 00030011 I !
B or138DE 4044 3BBE: jmp ($2,PC,D0.w)
a1 FFFFBFB" 404436894 : cas.w D1, DO, (54,84); (2+4)
a2 FFFF’3D~:1‘ 40443694 move.b DO, D4
A3 401"1"33‘5_,_\ 40A43B9C: move.b #5930, (51c00,Al)
A1 ADADDAEG A0A0Z26F0: bsr $40a026al v
A5 DOOFCSTO0 < 3
AG ODOFCAED
A7 OOOFCE6D v

If we walk upwards, we can see that the instruction that caused the
bus error was at 0x40A43B9C:

1| move.b #$90, ($1ce0,Al)

I opened up this section of code in IDA, which I still find myself
using with 68k Mac stuff because I'm used to it. It was pretty
clearly part of the routine that starts at 0x40A43B40, which i1s

helpfully labeled in the ROM map as InstallSoundIntHandler. Let’s
look at the whole function in more depth.

ROM:48A43B3E align 1@

ROM:4B8A43B4A

ROM:48A43EB48 InstallSoundIntHandler: ; CODE XREF: ROM:4BA43BLG]]

ROM:48A43IBLA ; DATA XREF: ROM:InstallSoundIntHandler o
ROHM:4BALIBLA lea ({(UBSndIntPatchi1-InstallSoundIntHandler})}).1,a2
ROM:48AL3BL4G jmp InstallSoundIntHandler{pc,a2.1}

ROMIABANBBUA §

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-33.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-3.png

The first thing it does 1s immediately jump to V8SndIntPatchl. This
appears to be something that was patched into this ROM for
handling sound initialization for the V8. For some added context,
the Classic II 1sn’t powered by an eight-cylinder gasoline engine;
V8 is the name of the custom chip that Apple first used in the
Macintosh LC. From the LC hardware developer note:

s A new custom VLSI (very large scale integration) chip, the
\V8 gate array, is the heart of the hardware design. It
integrates the timing, address decode, video generation,
clock generation, sound control, and GLU (general logic
unit) functions that were provided by individual chips in
earlier Macintosh computers.

Why are we talking about the LC here? Well, the reason is because
the Classic II 1s architecturally based more on the LC than the
original Macintosh Classic. Here’s an explanation from the
corresponding developer note for the Classic II:

Although the physical appearance of the Macintosh Classic II
computer is very similar to that of the Macintosh Classic, the
electrical design of the Macintosh Classic Il is based as much as
possible on the Macintosh LC architecture. Figure 1-1 is an overall
block diagram of the Macintosh Classic II. Notice that the number of
components has been significantly reduced through the use of
custom integrated circuits. The following are the major changes in
the Macintosh Classic II design:

¢ The Macintosh Classic Il uses an MC68030 processor rather than
the MC68020 used by the Macintosh LC.

A new custom VLSI (very large-scale integration) chip, the EAGLE
gate array, is the heart of the hardware design. It integrates the
Hming, memory mapping, video generation, clock generation,
sound control, and glue functions that were provided by
individual chips in the earlier Macintosh computers.

The text description of the EAGLE gate array is very similar to that
of the V8, so it should come as no surprise that the chips themselves
are very similar too. MAME handles them both in the same source
file. The point I'm trying to make here 1s that it makes sense that the
Classic II’s ROM has code referring to the V8. With that info out of
the way, let’s look at V8SndIntPatchl:

ROM:40A4CT66 UBSndIntPatchi: : DATA XREF: ROM:InstallSoundIntHandlerto
ROM:4BAUCTO6 move.l #'hdwr',d@

ROM:4BALCT AL _Gestalt

ROM:4BALMCTGE move.l a@,da

ROH:4BALCTF A btst #3,d8

ROH:4BALCT 7Y beq.s locret_4BALCTEA

ROM:4BANCTFO

ROM:4BALCY 76 loc UBAMCTTO: ; CODE XREF: ROM:4BAMCTFCL]
ROM:4BANCTFH ; DATA XREF: ROM:loc_A4BAUCY76Glo
ROM:4BANCTFE lea ((UBSndIntPatchiRtn-loc_uBALC776)).1,a2

ROM:4BALCTFC jmp loc_4BALNC776{pc,a2.1)

ROM:-BBALCTEBE [——— -
ROM:4BALCTEA

ROM:48ALC7EA locret 4OALCTEA: : CODE XREF: ROM:4BAMCT7ATj
ROM:-4BALCTEA rts

ROM:zMBALCTEBA [— -

This chunk of code is calling the Gestalt trap, which 1s how you
determine various info about the Mac. In particular, it’s using the

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-6.png

gestaltHardwareAttr selector, which is defined as ‘hdwr’ in Apple’s
public header files.

If bit 3 (gestaltHasASC) 1sn’t set in the response, it bails and
returns. Otherwise, it jumps to V8SndIntPatchlRtn at 0x40A43B4A,
which you can see in the history trace in the MAME debugger
screenshot from earlier. I went pretty deep into the hardware tables
for the Classic I and can confirm that gestaltHasASC is definitely
set on the Classic II. After all, the EAGLE contains a stripped-down
equivalent of the Apple Sound Chip (ASC).

Now, let’s take a look at V8SndIntPatchlRtn:

ROM:4BA43B4A UBSndIntPatchiRtn: : DATA XREF: ROM:loc_ L4BAUCYF6lO

ROM:4BAL3BLA moveq #6,da

ROM:-48A43BUC move . b ({byte CB3).w,d@

ROM:-4BA43B5A bpl.s loc_4BAL43BSYL

ROM:-48A43B52 rts

ROM-4BALM3BoY [—— -
ROM:48A43BSY

ROM:48A43B5YL loc_ LBAL43BSY: : CODE XREF: ROM:4BA43BSAT]
ROM:48A43BS Y movea.l {dword_2B6).w,al

ROM:48A4IBLE movea.l S116(a@),ad

ROM:-48A43B5C clr.1l 422{am@)y

ROM:-4BA43BGA clr.1 $1E{am@)

ROM:-4BA43BGY lea loc_ 48A43BDE ,ald

ROM:48A43BOE move.l af,{dword D88).uw

ROM:-48A43BGC add _uw dé.da

ROM:-48A43B6GE jmp loc_ 40A43BY2(pc,dB.u)

ROM-4BAL3BTF2 [-
ROM:48A43B72

ROM:4BA43BY2 loc_LBAL3BT2: : CODE XREF: ROM:4BA43BGET]
ROM:40A43B72 bra.s loc_46A43B92

ROM:-4BALM3BTY & —— - e
ROM:-4BA43BTY bra.s loc_48A43B92

ROM:-4BALM3BFG ; —— -
ROM:-4BA43BT 6 bra.s loc_ 4BAL3BD2

ROM:-4BA43BFE ; -
ROM:-4BA43B7 8 bra.s loc_4BAL43BO2

ROM-4BAY3BFA & —— -
ROM:-4BA43BTA bra.s locret _LOA43BAY

ROM-4BAY3BFE & —— -
ROM:-48A43BYC bra.s loc_4OA43BAG

ROM:-4BAY3BFE ; —— -
ROM:-4BA43BTE bra.s loc_4OA43Bo2

ROM:-4BA43BBA ;| —(——— -
ROM:-4BA43BEA bra.s loc_4B8A43BB2

ROM:-4BA43BEB2 ; (- e
ROM:-48A43BB2 bra.s loc_48A43BAG

ROM:-4BA43BBY ;| (- e
ROM:48A43B8Y bra.s loc_4B8A43BAG

ROM:-4BA43BBG ;| —— e
ROM:40A43BBG bra.s loc_48A43BAG

ROM:-40BA4N3BBE ; (e
ROM:-4BA43BEE bra.s loc_48A43BAG

ROM:-4BALM3BBA [—— - e
ROM:-4BA43BEA bra.s loc_48A43BAG

ROM:-4BALM3BBE ; —— -
ROM:-48A43BEC bra.s locret_L4BA4IBAL

ROM:-4BAYM3BBE ; —— -
ROM:-48A43BBE bra.s loc_LBAL3BAG

ROM:-4BAY3BOA [—— -
ROM:-4BA43B2A bra.s loc_4OA43Bab

ROM-4BAY 3B 2 & —— -
ROM:-48A43B92

ROM:48A43B92 loc_ 4BA43BD2: ; CODE XREF: ROM:loc_hBau3B72tj
ROM:-48A43B92 : ROM:uBAN3B7LT] ..

ROM:4BA4IED2 movea.l {dword CEC).w,al

ROM:-48A43B2G bclr #4518 008(a1)

ROM:-48A43BOC move.b #508,%1Co008{a1)

ROM:-48A43BAZ rts

ROM:-4BALM3BAL ;| —— -
ROM:48A43BAY

ROM:48A43BAY locret_L4OAN3BAL: : CODE XREF: ROM:u4BA43B7AT]
ROM:48A43BAY ; ROM:uoA43BECT;

ROM:-4BA43BAY rts

ROM-4BA4M3BAG [—— -~~~
ROM:-48A43BAG

ROM:4B8A43BAG loc 4BAL3BAG: ; CODE XREF: ROM:40A43B7CTj

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-7.png

ROM:4BA43BAG : ROM:uBAN3BB2Tj ..

ROM:40A43BAG movea.l {dword CEC).w,af
ROM:4BALIBAA move.b #508,513(a@)
ROM:4BALMIEBA rts

ROM:ABALBBBZ §
ROM: 48A43BB2

ROM:4BA43BB2 loc_ 4BA43BB2: ;: CODE XREF: ROM:4BA43BRAT]
ROM:48A43BE2 movea.l {dword CEC).w,ad

ROM:48A43BBG move.b #2,8(aB)

ROM:4BALIBBEC rts

ROM:HBA4IBBE ; ————
Phew! This 1s a decent amount of code. It’s not that complicated

though. I’ll explain the important stuff. You can see the instruction
that leads to the Sad Mac at 0x40A43B9C. If you start at the top,
what’s happening is it’s loading a byte from RAM at 0xCB3 into
register DO:

1| moveq #%$0,d0
2 | move.b (byte CB3).w,do

If you know where to look out there, you can discover that this
global variable is called BoxFlag and contains a value identifying
which machine you have. If I step through this code in MAME, 1
can see that DO ends up loaded with the value Ox11 = 17, which is
correct for the Classic II.

M Debug: macclas2 - Motorola MC62030 “maincpu’ et
Debug Options Media Settings
cycles B8 a || 40443644 moveq #F30, DO 7000 "
heamx 514 40A43B4C move.b Scb3.w, DO 1038 0OCB3
heamy 192 40443850 bpl $40a43b54 BAD2Z
frame 428 40443652 rt= 4E7S
flags ..S5...cciviinnnnn 40443854 movea.l 52bé.w, AD 2078 02B6
————————————————————————————— 40443858 movea.l (§110,40), AD 2068 0110
PC 40443B50 40443B5C clr.1 (522,400 42A8 0022
SR 2000 40443860 clr.1 (§le, na0) 4248 0OLE
SP ODOFCGEBC 40443664 Tea (§72,PC) ; (540a43bd8), AD A41FA 0072
Usp 7FoO001107 40443868 move.l AD, S5dB0.w 21C8 0ODB0
ISP OOOFCEBC 40443B6C add.w Do, DO Do40
MSP 00DD0DD0D A0A43BEE jmp ($2,PC,D0.w) 4EFE 0002 v
D0 00000011 = =
0Dl 000056540
D2 40416500 MAME debugger version 0.272 (mame0272-427-g9b914tbtes2-dirty)
D3 FFFFFFF& Currently targeting macclas2 (Macintosh Classic II)
D4 Q0800000 =hpset 40a43b4a
D5 00000000 EBreakpoint 1 set
D& ODOFFFFC Stopped at breakpoint 1
Dy 00030011
AQ 00004539D
Al FFFFEBFBA
A2 FFFF73D4
A3 40A1GABA
A4 A0DAD9AEB
AS ODOFCB70
Ag O0OFCAEOQ
A7 DDOFCeBC
IR 00001038 b

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-7.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-34.png

Continuing further through the code, some other stuff happens, and
then at 0x40A43B6C the value in DO ends up being doubled (so it
turns into 0x22). Immediately after this, it 1s used as an offset in a
jump instruction. Here’s IDA’s syntax for the jump, because it’s
more intuitive than what MAME displays:

1| add.w do,de
2 | jmp loc_40A43B72(pc,dO.w)

Since DO ends up as 0x22 after being doubled, we jump to
0x40A43B72 + 0x22 = 0x40A43B94, and here’s what that code
looks like in MAME’s debugger when we reach it:

M Debug: macclas2 - Motorola MC62030 “maincpu’ et
Debug Options Media Settings
cycles 11 ~ | 40A43B94 cas.w D1, DO, (54,44); (2+) OCEC OBAZ 0004
heamx 571 40443894 move.b DO, D4 1800
beamy 192 40A43B9C move.b #3590, ($1c00,Al) 137C 0090 1C00
frame 428 40A43BA2 rts 4ET5
flags ..5, 40443BA4 rts 4ETF5
————————————————————————————— 40A43BAE movea. | Scec.w, AD 2078 OCEC
PC 40443B94 40A43BAA move.b #%90, (513,A0) 117C 0090 0013
SR 2000 40443BB0 rts 4E7S
5P O0OFCBEC 40A43BB2 movea.l Scec.w, AD 2078 DCEC
Usp FOOO01107 40443BB6 move.b #52, (55,40) 117C 0002 0008
ISP 0O00FCeBC 40A43BBC rts 4E7S v
MSP 00000000 ANAAIRBC mraraa 1 Crar w A 2778 NCCO
DO 00000022 € >
B S0 o MAME debugger version 0.272 (mame0272-427-g9bal4Tbfe62-dirty)
D3 FFEFFEEG Currently targeting macclas2 (Macintosh Classic II)
=hbpset 40a43bd4a

D4 00800000 Breakpoint 1 set

D5 00000000 Stopped at breakpoint 1

D& OOOFFFFC
D7 00030011
AD 40443BDS
Al FFFFBFEA
A2 FFFF73D4
A3 40A16ABA
A4 40A09AED
A5 OO0OFCE7O0
Ag OO00FCAEOD
A7 000OFCBBC hd

Stepping further through the code, you can see we eventually reach
the instruction that causes a Sad Mac. Let’s see what all the registers
look like before 1t’s executed:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-35.png

Debug Options Media Settings

2 Debug: macclas? - Motorola MCE3030 "irnaincpu’

Pt

cycles
bheamx
beamy
frame
Tlags

590

192
428

40443B9C
2000

000FCEEC
70001107
000FCBEC
00000000
00000022
00000C30
40416500
FFFFFFFG
00800022
00000000
OO0FFFFC
00030011
40443608
FFFFBFEA
FFFF73Dd
40A16ABA
40A09AEG
O00OFCE70
O00OFCAED
O0D0OFCEEC

40443694 cas.w DL, DO, (54,44); (2+)
40443894 move.b DO, D4

A0A43B9C move.b #$90, ($1c00,Al)
40A43BAZ2 rits

40A436BA4 rts

40443BA6 movea.l Scec.w, AD
40A43BAA move.b #8590, (§13,40)
40443BB0 rt=

40443BB2 movea.l Scec.w, AD
40A43BB6 move.b #%52, (58,4A0)
40A43BBC rts

ANAAIRRC mriraa 1 €rar w Al
<

OCEC 08AS 0004

1800
137C
4E7S
4ETF5
2078
117C
4E7S
2078
117C
4ETF5

TIRTR

0090 1COo0

OCEC
0020 0013

OCEC
o002 0008

e
>

W

MAME debugger version 0,272 (mame0272-427-g9b9l4ftbfes2-dirty)
Currently targeting macclas2 (Macintosh Classic II)

=hpset 40a43bda

Breakpoint 1 set

Stopped at breakpoint 1

Hmm, that’s odd. This crashing instruction writes the value 0x90 to
an offset 0x1CO0O0 bytes past the address stored in Al. Al is set to

OxFFFF8FBA, so the address where the write occurs at is

OxFFFFS8FBA + 0x1C00 = OxFFFFABBA. This 1s a totally invalid
address on the Classic II! No wonder we get a Sad Mac. As
expected, as soon as we step into this instruction, instead of
reaching the RTS instruction just below it, we end up in the code
path for displaying a Sad Mac error at 0x40A026F0. This is
definitely where everything craps out.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-36.png

2 Debug: macclas? - Motorola MCE3030 "irnaincpu’ >
Debug Options Media Settings

cycles 14 » | 40AD26F0 bsr 540a026a0 61AE A
beamx 597 40A026F2 bsr £40a026a0 B1AC
beamy 192 40A026F4 bsr 540a02cal GLAL
frame 428 40A026F6 bsr 540a026al B1ASB
flags ..5......... M. .. 40A026F8 bsr 540a0Zcal B1AG
————————————————————————————— 40A026FA bsr 540a026a0 61lad
PC 404a026F0 40A026FC bsr $40a026a0 8lAa2
SR 2008 ADADZGFE bsr 540a026al G1AD
5P DDOFCEE0 40402700 bsr 540a02cal 519E
UsP 7FoO01107 40402702 bsr 540a026al B519C
ISP OO0OFCE60 40402704 bsr 540a0Zcal 5194 v
MSP 00000000 ARANITAE ke £ANanTIEan [§-1
DO 00000022 < ¥
g% ggﬂ'g‘ggg MAME debugger version 0.272 (mame0272-427-g9b914fbfe62-dirty)
D3 EFEFEFEG Currently targeting macclas2 (Macintosh Classic II)
=hpset 40a43bda

04 00800022
D5 00000000
De O0OFFFFC
D7 00030011
AD 40A43BDE
Al FFFFBFEA
AZ FFFF73Dd
A3 40A16ABA
A4 40A09AES
A5 QO00OFCE7O0
Ag OQO00FCAEOD
A7 O0DOFCEG0 i

Breakpoint 1 set
Stopped at breakpoint 1

Okay, so now I had a pretty good idea of what was happening in
MAME. Al had a junk value, so the ROM code was writing to an
invalid address. FFFFABBA dabba doo! I decided to investigate
further to understand how A1l came to be loaded with a bad address.
And that’s when I discovered something really bizarre.

Let’s take a closer look at one of the earlier screenshots, after we
used the value of DO (BoxFlag) to jump to the correct chunk of code
for the Classic II:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-37.png

2 Debug: macclas? - Motorola MCE3030 "irnaincpu’ >
Debug Options Media Settings

cycles 11 » | 40A43B94 cas.w D1, DO, (54,484); (2+) OCEC 0BAS 0004
bheamx 571 40443894 move.b DO, D4 1800
beamy 192 40443B9C move.b #8590, (§1c00,Al) 137C 0090 1C00
frame 428 40A43BAZ2 rits 4E75
Tlags ..5. .ciieninnnnns 404436844 rts 4ETF5
————————————————————————————— 40443BA6 movea.l Scec.w, AD 2078 OCEC
PC 40443B94 40443BAA move.b #%90, ($13,A0) 117C 0090 0013
SR 2000 40443BB0 rt= 4E7S
5P ODDOFCEBC 40443BB2 movea.l Scec.w, AD 2078 OCEC
UsP 7FoO01107 40443BB6 move.b #52, (55,A0) 117C 0002 0008
ISP OOOFCEEBC 40A43BBC rts 4ET5 v
MSP 0[}[}[}[}[}[}0 ANAAIRRC mmaras 1 €rar w A1 TITR ML
DO 00000022 < ¥

g% ggﬂ?é?ﬁg MAME debugger version 0.272 (mame0272-427-g9b91l4fbfes2-dirty)
Currently targeting macclas2 (Macintosh Classic II)

D3 FFFFFFF&

D4 00B00000 =bpset 4Da43bda
Breakpoint 1 set

D5 00000000 - ;
D6 OOOFEFEC Stopped at breakpoint 1

D7 00030011
AD 40A43BDE
Al FFFFBFEA
AZ FFFF73Dd
A3 40A16ABA
A4 40A09AES
A5 QO00OFCE7O0
Ab OQO00FCAEOD
A7 0O00OFCBEC i

I thought about this some more, and eventually realized that
something absolutely crazy happened here. We were supposed to be
jumping into a table of BRA.S instructions, one for each possible
BoxFlag value. That’s why we added DO to itself before using it as a
jump offset — each BRA.S instruction is two bytes long, so the
index into the table needed to be doubled to turn it into a byte offset.
Why didn’t we end up pointing at a BRA.S instruction? And where
did this CAS.W instruction come from?

If you look closely at the table of branches below the IMP
instruction at 0x40A43B6E, there are only 16 entries in the table,

corresponding to BoxFlags 0 through 15. The Classic II is BoxFlag
17!

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-35.png

4 Debug: macclas2 - Motorola MC63020 'maincpu’ >
Debug Options Media Settings
cycles 1 40443B6C add.w DO, DO D040 A
beamx 339 40A43B6E jmp (§2,PC,D0.w) 4EFB 0002
beamy 204 40A43B72 bra $40a43b92 G01E
frame 426 40A43B74 bra 540a43b92 G01C
flags ..5......0ccvnn. 40443B76 bra 540a43baz G01A
————————————————————————————— 40DA43B78 bra $40a43b92 60138
PC 40443B6E 40443B7A bra 540a43bad 6025
SR 2000 40A43B7C bra 540a43bat o025
5P O000FCBEC 404843B7E bra $40a43b92 6012
Usp 70001107 40A43B80 bra $40a43bb2 e030
ISP 0O0OFCBBC 40A43B82 bra 540a43bat o022
M5F 00000000 40443684 bra 540a43bat G020
D0 00000022 40A43B86 bra $40a43bak G01E
0l 00005640 40A43B88 bra 540a43bas @01C
D2 40416500 40443B8A bra 540a43bat G01A
D3 FFFFFFFE 40843B8C bra $40a43ba4 e016
04 00500000 40443B8E bra 540a43bak G0lG
D5 00000000 40A43B90 bra 540a43bas G014
DEé O00FFFFC 40443692 movea.l Scec.w, Al 2278 OCEC
D7 00030011 40443B96 bclr #54, (51800,A1) 08A9 0004 1800
AD 40A43BDE 40A4369C move.b #590, (§1c00,Al) 137C 0090 1CO0
Al FFFFBFEA 40443BAZ2 rts 4E7S
AZ FFFF73D4 40443644 rts 4E7S
A3 40A10ABA 40A43BAE movea.]l Scec.w, AD 2078 OCEC
A4 40ADSAEG 40A43BAA move.b #590, ($13,A0) 117C 0090 0013
A5 O0OFCE70 40443BB0 rts 4E7S hd
A6 ODOFCAED @ 5
A7 000FCBEC

As I said earlier, the calculated offset we jump to 1s 0x40A43B94,
which 1s not even supposed to be the start of an instruction. It’s
smack dab in the middle of the MOVEA.L instruction at
0x40A43B92, which 1s the instruction that loads A1 with a real
address that this code can use for enabling the sound interrupt.

When we jump to 0x40A43B94, we aren’t running intended code
anymore. The CPU gets out of sync with the path that the code was
designed to follow. 0OXOCEC was supposed to be the second half of

the MOVEA. L instruction — the address in RAM to load from —
but instead, it is being treated as the start of a new instruction.

4 Debug: macclas2 - Motorola MCE2030 maincpu’ >
Debug Options Media Settings
cycles 13 40443894 cas.w D1, DO, (54,484); (2+) OCEC 0OBA9 0004
heamx G644 40443894 move.b DO, D4 1800
beamy 159 40A43B9C move.b #3590, (51c00,Al) 137C 0090 1C00
frame 428 40443BA2 rts 4E7S

The CPU doesn’t get back in sync right away. We execute this
mystery CAS (compare and swap) instruction, and then an
unintended “MOVE.B D0, D4” instruction, before finally reaching a
real MOVE.B instruction at 0x40A43B9C — the instruction that

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-38.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-13.png

crashes. That is the point where the CPU has returned to running
code that Apple actually wanted it to run. But unfortunately, Al
contains an invalid address because the code that was supposed to
fill it out wasn’t reached, so of course everything crashes when we
try to write to A1 + 0x1CO00. It all makes sense.

Going back further, A1 gets loaded with the “junk” value of
OxFFFF8FBA as part of the initial jump to InstallSoundIntHandler.
So, of course, it’s not really junk. It’s being used as an offset for a
jump instruction:

M Debug: macclas? - Motorola MCE8030 ":rnaincpu’ et
Debug Options Media Settings
cycles 13 »~ | 40A4AB78 movem. | DO-DZ/A0-AZ/AG, -(AT) 48E7 EOEZ -
beamx 419 40848B7C Tlea sFfffreed. 1, Al 43F9 FFFF 7oi64
beamy 194 ADAAABBZ qsr (-58,PC,AL. 1) 4EBE 98F8
frame 428 40A44B86 lea sfffrafba.1, Al 43F9 FFFF S8FBA
Flags .-S5.cuunnnnn. z.. ADA4ABBC Jsr (-58,PC,A1. 1) 4EBE 98F8
————————————————————————————— 40448890 Tea sffffozco.1, Al 43F9 FFFF 92C0
PC A0A4ABSC AQAMABIE Jsr (-58,PC,A1.T) AEEE 98F8
SR 2004 40A44B94 lea sFFffa43e6.1, Al 43F3% FFFF 9436
SP ODOFCECO ADA4ABAD Jsr (-%8,PC,AL. 1) 4EBE 98FB
UspP FOo001107 40448884 movem. 1 (A7)+, DOD-D2/AD-AZ/ A6 4CDF 4707
ISP 0QO0OFCeCO 40A4ABAB Jsr (5ldbe,PC) ; (540a4c96E) 4EBA 1DEE v
MSF‘ DDDDDDDD ANAAARAT Tas CFFFRhETTE 1 A A1CG CCCR E77&
DO 00D0OODOCO < >

0l 00005640

D2 40416500 MAME debugger version 0.272 (mame0272-427-g9b9l4ftbfes2-dirty)

D3 FFFFFFFG Currently targeting macclas2 (Macintosh Classic II)
D4 ODE00000 =bpset 40adabse
EBreakpoint 1 set

D5 00000000 - ;
DE OOOFEFEC Stopped at breakpoint 1

D7 00030011
AD 000063EB4
Al FFFFBFEA
Az Q00FCEGC
A3 4041 6ABA
A4 A40AD9AES
A5 QO00OFCE7O0
Ag OQO00FCAEOD

A7 00DOFC&CO b

IDA’s disassembly is a little more readable. That value of
OxFFFF8FBA loaded into A1 represents how much you have to add
to the program counter in order to reach InstallSoundIntHandler
from where you currently are. Interpreting it as signed, it’s a
negative number because that function is further back in the ROM
code.

ROM:4BA4ABBG loc_ L4BALABBRG: ; CODE XREF: SoundInitPatch+14lp
ROM:4BA4ABEG

ROM:4BA4ABRG lea ({InstallSoundIntHandler-loc_4BA4ABBG6)).1,al
ROM:-4BA4ABEC jsr loc_hBAhABRG{pc,al1.1}

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-39.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-17.png

Overall, I felt that I totally understood what was happening. I’'m
probably repeating myself, but I just want it to sink in one more
time: The problematic value in A1 gets loaded as part of a big
relative jump to this section of ROM, and an out-of-bounds table
access 1s jumping past code that 1s supposed to load A1 with an
actual address of a peripheral to configure for sound interrupts. So
A1 still contains that negative offset for the jump instead of a real
address. Finally, it ends up being used as an address in a write
operation, and boom, Sad Mac.

If you’ve followed along with me thus far, I’'m sure there are some
burning questions on your mind. This explains how MAME fails,
but not why. Why was this happening? Also, why didn’t this same
failure occur on actual hardware? Obviously, the Classic II wasn’t
recalled because of an 1nability to use 32-bit addressing. There’s no
way that happened. It would have been all over tech news. Not to
mention the fact that the people actually working on the ROM code
would have quickly noticed it while they were testing. It’s kind of a
glaring issue.

So what gives? Was MAME doing something wrong here that didn’t
match hardware? This code couldn’t have really been reached on
hardware, right? I have the answer to these questions, but as a
forewarning, the situation is way more complicated than I expected
it to be.

I started out by trying to understand what the CAS instruction
reached after the out-of-bounds jump was doing. Here are the bytes:

0C EC 08 A9 00 04

I quickly noticed that 1f I changed my disassembly in IDA so that it
thought the code was supposed to start there, it refused to
disassemble the instruction at all:

ROM:48A43B94 dc.w $CEC

ROM:-48A43B96 dc.w $8A9

ROM:48A43B98 dc.w 4

ROM-48A43BY9A ; ——— -
ROM:48A43B9A move.b da,dy

ROM:48A43B9C move .b #5908, {al)

ROM:48A43BA2 rts

When I tried to convert it to code starting at 0x40A43B94, it said:
Command "MakeCode" failed

GNU objdump also failed to disassemble it, and then got right back
in sync with the intended code:

40a43b94: Ocec .short 0x0cec
40a43b96: 08a9 0004 1800 bclr #4,%al@(6144)
40a43b9c: 137c 0090 1c00 moveb #-112,%al@(7168)
40a43ba2: 4e75 rts

The fact that two well-known disassemblers balked at this
instruction piqued my curiosity. I decided to use MacsBug on my
Macintosh Ilci, which also has a 68030 processor, to put all that
code into RAM at a random location and see what MacsBug thought
about it. Since I was going through all this effort, I also arranged all
the other registers to be identical to what I was seeing on MAME. It
wasn’t a perfect match with what I was seeing in MAME, though; I
had to leave the program counter pointing into RAM instead of
ROM.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-18.png

#34 834 v aau=s - R
#22080 2 #22680 ' ..UR’ (between #21K and #22K)
#1984318976 #1084218076 E"" il over "
#4204067286 2 #-10 Tlieltirle i jUSt 13)
:3383638 *8393593 tafjee

31 848572 “16435?2
S

it -:just under a1
qﬁt w_&n 1

Interesting — MacsBug also said it was a CAS.W instruction, but it

interpreted it slightly differently. It said it was CAS.W
D1,D2,50004(A4).

Of course, I couldn’t resist stepping through the code in MacsBug to
see what it would do on a real 68030 processor:

DL = PO 1 UJEnr TILOO O T T RIOMD O3 wTeEe

D3 = SFFFFFFFG #4204067286 #-18 '"*""'

I \IH:I. I.I'Vtﬂ'_" I
| T

-n4 = $BOS0EESE *8388608 *eaaaﬁaﬂ ‘A (exmtlu WJBH ﬁ | 8 kabi
= $000000RE ®B BG .. - -':'.:,
= $PPOFFFFC #10848572 #13495?2 featl Cjust unr.fe (M) it

n'.' = $0EP30011 #106625 H106625 eses’ < ust over lifg,ﬂ() I

A9 = $48A43B08 #1884585048 *1334535643 E§ E
Al = §FFFFSFEBA ®#4204938554 #-28742 | éj’ etween

el #4204031412 | #-35884
#1954320442
*#1684267238 s

Wait...what? If you compare the register display on the left side of
the screen in the first picture with the same display in the second
picture, something incredibly strange has happened. Even though
MacsBug and MAME both don’t mention Al in their interpretations
of this CAS instruction at all, the value of A1 has changed! It started
out as OXFFFFS8FBA, and ended up as OxFC6BS. It seems to have

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/macsbugbefore3.jpg
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/macsbugafter3.jpg

turned into a value similar to what’s in A5 through A7 — a valid
RAM address.

Further tinkering with MacsBug and different register values
revealed that the new value of A1 depended on the original value of
Al, A7, and the program counter. I couldn’t figure out exactly what
it was doing, but it was definitely majorly changing A1’s value.

At this point, I felt like I was onto something. The MAME-emulated
Classic II was crashing because A1 didn’t change, so it still
contained an invalid address. On hardware, this weird instruction,
which several disassemblers refused to touch, and wasn’t even
intended to be jumped to because it starts in the middle of an actual
valid instruction, was changing A1l to a new value that was a good
address. Was this crazy instruction accidentally fixing A1 and thus
hiding a bug from Apple’s ROM developers in the early 1990s?

This was about the time that Arbee suggested I start sharing my
research on the 68kmla forums and the bannister.org forums to see if
some of the incredible folks who know way more than me about the
68k 1nstruction set might be able to chime in. I also asked around on
IRC in #mac68k on Libera.

The consensus was that this 1s not a valid CAS instruction, and that
MacsBug’s interpretation of the registers being D1 and D2 is
correct. Let’s look at what the Motorola M68000 Family
Programmer’s Reference Manual says about the encoding of the
CAS instruction:

https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/
https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/
https://forums.bannister.org/ubbthreads.php?ubb=showflat&Number=124008
https://www.nxp.com/docs/en/reference-manual/M68000PRM.pdf
https://www.nxp.com/docs/en/reference-manual/M68000PRM.pdf

CAS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EFFECTIVE ADDRESS

o o o ° ! SIZE 0 ! ! MODE REGISTER

0 0 0 0 0 o | o Du o | o | o Dc

Instruction Fields:

Size field—Specifies the size of the operation.

01 — Byte operation
10 — Word operation
11 — Long operation

Effective Address field—Specifies the location of the memory operand. Only memory
alterable addressing modes can be used as listed in the following table:

Addressing Mode| Mode Register Addressing Mode| Mode Register

Dn — — (ox). W 111 000
An - — {xxx).L 111 001
(An) 010 reg. number:An #=dala> — —

(An) + 011 reg. number:An

— (An) 100 reg. number:An
(dyg.An) 101 reg. number:An (d4g.PC) — —
(dg.An.Xn) 110 req. number:An (dg,PC,xn) - —_
(bd, An Xn) 110 reg. number:An (bd,PC Xn) — —
([bd,An,Xn),0d) 110 reg. number:An ([bd,PC.Xn],od) — —
([bd.An],Xn,od) 110 reg. number:An ([bd PC],Xn,0d) — —

Du field—Specifies the data register that contains the update value to be written to the
memory operand location if the comparison is successful.

Dc field—Specifies the data register that contains the value to be compared to the

memory operand.

Comparing this with the 3 words of the instruction (0xOCEC
0x08A9 0x0004) and filling in the fields, we can see the following:

5 14 i3 2 # 10 9 8 7 & 5 4 3 10
EFFECTIVE ADDRESS

el el SIZE o1 ! MODE REGISTER

o | o | o of 1| 10eword | 0 | 1 | 1 101=(d16,An) 100=A4

o [o o oo oo Bu 5 [o [o Be

o ol o] o] 1|00 010=D2 1] o0 | 1 001=D1

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-20.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/BadInstruction-1.png

The first word appears to be a valid CAS instruction. The second
word, though, has a few bits that are 1 even though the instruction
format specifically says they are supposed to be 0. I’ve marked them
in red. Also, the Du and Dc fields match what MacsBug says, as
opposed to how MAME interpreted it.

The third word, 0x0004, 1s the d16 value mentioned in the MODE
field. It’s the $0004 offset from A4. So according to Motorola’s
reference manual, this instruction is:

1| CAS D1,D2,$0004(A4)

...except it has three bits that are 1 in places where they are
supposed to be 0. So it’s not a valid instruction at all. At least, it’s
not documented.

Side note: I think MAME’s debugger is also decoding normal CAS
instructions incorrectly; 1f I change it to 0OxOCEC 0x0081 0x0004
instead, which is the correct way to write this instruction without the
three bad “1” bits, 1t still thinks Du 1s DO instead of D2. But that’s
beside the point — the instruction we’re dealing with in this story is
completely messed up either way.

The CAS (compare-and-swap)_instruction is an interesting one. It’s
used for accomplishing various atomic operations without requiring
a lock. It is one of the few instructions in the 68000 family CPUs
that perform a read-modify-write bus cycle. What this particular
instruction is supposed to do is compare the word value in memory
at A4 + 4 to the value of D1. If they are the same, then the value in
D2 is written to memory at A4 + 4. Otherwise, the value in memory
at A4 + 4 1s loaded into DI.

https://en.wikipedia.org/wiki/Compare-and-swap

It clearly still does some of this stuff, like the read-modify-write
cycle involving A4 + 4. If I change A4 to point to an invalid
address, MacsBug complains to me. For example, on my Mac Ilci
with the same test setup I showed earlier, if I set A4 to OxFFFF0000
and rerun the bad instruction, MacsBug tells me this:

Bus Error at 0004CB20
while reading word (read-modify-write) from FFFFO004 in
Supervisor data space

This definitely means that this instruction still performs the RMW
cycle at A4 + 4. It doesn’t seem to do exactly what the CAS
instruction is supposed to do though. Obviously, the normal CAS
instruction wouldn’t mess with the value of Al. I ran more tests
after changing A4 to point to RAM. If I store the value OxFFFF at
A4 +4,and D1 1s set to Ox1111 and D2 is set to 0x2222, then after
executing the instruction, memory at A4 + 4 changes to 0x2222. But
that doesn’t really make any sense, because it only should have
written 0x2222 to memory if D1 was equal to OXFFFF.

Let’s summarize what we’ve learned so far.

e The invalid code that the ROM accidentally jumps to
(OxOCEC 0x08A9 0x0004) 1s sort of like “CAS
D1,D2,50004(A4)”, but not really, because some of the bits
that are supposed to be 0 are actually set to 1.

e On another 68030-based Mac, I’ve observed that this
instruction ends up modifying the value stored in register Al.

e MAME’s 68030 CPU emulator does not change A1 like this,
because the instruction 1s undocumented and normal code
would never use it.

e The Sad Mac in MAME occurs a couple of instructions later
because Al 1s set to an invalid address, and code in ROM tries
to write a byte to A1 + 0x1CO00.

I was starting to believe something that sounded almost too crazy to
be true: Apple had an out-of-bounds jump bug in the Classic II’s
ROM that should have caused a Sad Mac during boot, but they had
no idea the bug was there because the 68030 was accidentally fixing
the value of A1 by executing an undocumented instruction. How
could I prove that my theory was correct?

By buying a Classic II and hacking the ROM in order to see exactly
what 1s happening on hardware, of course!

This Classic II was manufactured in 1991, so it’s about 34 years old
at this point. Computers this old usually need to be repaired if
nobody has already fixed them. As [mentioned in a previous post
about the LC III capacitor polarization mistake, the surface mount
capacitors in old Macs leak out corrosive goo over time. This
machine was no exception. I didn’t even try powering it up. I

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/ClassicII.jpg
https://www.downtowndougbrown.com/2024/11/the-capacitor-that-apple-soldered-incorrectly-at-the-factory/
https://www.downtowndougbrown.com/2024/11/the-capacitor-that-apple-soldered-incorrectly-at-the-factory/

immediately opened it up and removed what I believe was the
original Sonnenschein 1/2 AA lithium battery with a March 1991
date code. The battery had not leaked at all, luckily! That’s another
unfortunate thing that happens in a lot of old Macs that have been
sitting around for decades — severe battery damage.

A
L K
BEBERBRE AN ANHINIAANE

R TITTITTTTTITIT

341-0864
EFC
@ APPLE 1991
B21E
© APPLE 1991
341-0866
5BE9
@ APPLE 1991
341-0867
BA1E

& APPLE 1931
Apple Computs

i

il

I don’t want to go into excruciating detail about the repair and make
this post even longer to read, but if you’re interested in hearing
more about that process, I posted a few updates about the repair in
my_68kmla forum thread. I did accidentally short /RESET to ground
while soldering in new capacitors, but I eventually got the logic
board working. This was very similar to what happened to Adrian’s
Digital Basement on his SE/30 board a few months ago, but lucky
for me, my accidental short didn’t involve 12 volts and fry a bunch
of chips! Adrian’s channel is an excellent resource for vintage
computer enthusiasts out there, if you’re not already subscribed.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/logicboard.jpg
https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/page-3#post-552591
https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/page-3#post-552591
https://www.youtube.com/watch?v=v8KXPXT4E1U
https://www.youtube.com/watch?v=v8KXPXT4E1U

The Classic II has a cathode-ray tube for its screen, which scares the
crap out of me, so I opted to use a different solution in order to run
the logic board by itself without any dangerous voltages. Plus, the
analog boards in these computers are known to be a huge pain to
repair. This one had really bad capacitor leakage, so that’ll probably
be a future repair project. The bottom line is I knew I’d be installing
and removing ROM chips a bunch, so I wanted to run the logic
board out in the open, for reasons of both safety and convenience.
Special thanks to 68kmla forum member davewongillies for posting
his similar setup with a Classic II logic board, complete with

Amazon links for a bunch of the parts. That Mini-Fit Jr. pin
extractor tool on Amazon is absolute garbage though — I could
never get it to work. I ended up using staples instead.

I got impatient while waiting for my RGBtoHDMI to arrive for
converting the Classic II’s video signal into HDMI, and eventually
discovered another solution created by GitHub user guruthree
involving a Raspberry Pi Pico that converts the signal to VGA. 1
made a few cables, tweaked the code until the timings and colors

https://en.wikipedia.org/wiki/Cathode-ray_tube
https://68kmla.org/bb/index.php?threads/running-a-macse-30-without-an-analog-board.38857/#post-522389
https://68kmla.org/bb/index.php?threads/running-a-macse-30-without-an-analog-board.38857/#post-522389
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/poweradapter.jpg
https://github.com/guruthree/mac-se-video-converter/

were correct, and ended up with this concoction to adapt between a
CGA DE-9 video connector and VGA:

Although I would never do anything like this in a real production
environment where reliability matters, I didn’t even use level
shifters for the 5V signals coming from the Mac. Technically, the
RP2040 is “sort of” 5V tolerant, even though it’s not documented in

the datasheet. That, combined with the fact that I had a few Picos
laying around that I didn’t care about destroying, gave me enough
confidence to try it out.

Here’s the whole mess, all wired up together, along with an ATX
power supply. I also swapped the original ROM chips out with some
programmable SST29EE010 EEPROMs I had on hand.
Interestingly, the factory chips from Apple were actually UV-
erasable EPROMs, so I could have even used the original chips if I
had a UV chip eraser.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/videoadapter.jpg
https://hackaday.com/2023/04/05/rp2040-and-5v-logic-best-friends-this-fx9000p-confirms/
https://hackaday.com/2023/04/05/rp2040-and-5v-logic-best-friends-this-fx9000p-confirms/

I successfully booted from a SCSI drive using this setup, and could
capture the video signal with one of my many video capture

devices:

Welcome to Macintosh.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/entiresetup.jpg
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/welcome.png

By the way, I think there’s something wrong with at least one
column of pixels on the left side. I think 1t has something to do with
the tweak I made to the code running on the RP2040 in order to
make 1t sync up correctly with the Classic II’s video signal. I’'m sure
I could fix it if I played around more. The RGBtoHDMI, which
arrived a few days later, does not have this problem.

Anyway, I knew I was in business. I threw together some 68030
assembly code to display the value of A1 on the screen, found an
unused place in the ROM to put it, and then came up with three
custom ROMs to try on the Classic II:

e Custom ROM 1: Replace the instruction at 0x40A43B9C
that results in a Sad Mac (the MOVE.B instruction) with a
jump to my special code that draws A1 to the screen, so we
can see what A1l is on hardware at that point. Also, this would
verify whether this code even runs at all on hardware.

e Custom ROM 2: Replace the instruction at 0x40A43B94 (the
CAS instruction) with the same jump to my special code. This
would verify whether the out-of-bounds jump was really
happening, and what the value of A1 was leading up to it.

e Custom ROM 3: Replace the instruction at 0x40A43B94 (the
CAS instruction) with NOPs. This would ideally replicate
exactly what I was seeing in MAME, proving that the bad
CAS instruction was vital to the Classic II’s ability to boot.

Let’s look at the results one by one. Here’s the result that was
displayed when I ran Custom ROM 1:

This verified that the section of code I was looking at definitely ran
on hardware. It also showed that A1 was set to a very interesting
value when it reached the instruction that crashed on MAME.
0x40A4BBB?2 is not really an address you would write to because
it’s a ROM address, but it doesn’t cause a bus error 1f you attempt it.

Here 1s what I got when I ran Custom ROM 2:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-21.png

FFFFBFBRA

The same Al value that we saw in MAME! This proved two things.
One, the out-of-bounds table jump was definitely happening — if it
wasn’t, my custom Al drawing code wouldn’t have ran at all, since
the JMP to 1t was stored out of sync of the normal intended code
flow just like the accidental CAS instruction. Second, it also proved,
along with the first test, that the CAS instruction was indeed fixing
A1l on hardware, just like I theorized.

Lastly, my test run of Custom ROM 3, which eliminated the CAS
instruction from the situation altogether, gave me the final proof |
needed:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-22.png

A Sad Mac, just like I saw with MAME in 32-bit mode. I also
discovered during this test that on hardware, the same Sad Mac
happens in 24-bit mode too. So MAME is actually more tolerant
than hardware of that invalid write in 24-bit mode.

These results motivated me to make a couple more hacked ROM
images to run on hardware in order to glean the values of all of the
CPU’s data and address registers immediately before and after the
CAS instruction. The data register values are shown in the left
column, address registers in the right column. Before:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-23.png

And after:

oooooD2z2
00005640
40A16500
FFFFFFFD

oD800D0DD
0ooooDDDD

ODOFFFFC
goo3oon

40A43BD8
FFFFBFBA

FFFF?3D4
40R16ABA
40A0D9AEG
OODFCB70
OODFCAED
000FC6BLC

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-41.png

oDoooDz2
00005640
40A16500
FFFFFFFD

oD8000DD
0ooDDDDD

ODOFFFFC
goo3oon

40A43BD8
40A4BBB2
FFFF?3D4

40R16ABA
40A0D9AEL
OODFCBY0
OODDFCAED
000FC6BLC

Yep! Everything is the same except for A1, which has magically
been transformed from FFFFS8FBA to 40A4BBB2. The mystery
instruction is definitely what was responsible for that.

One fun part about this test was being able to successfully verify
that everything on hardware was exactly identical to what MAME
did up to the bad instruction. The entire register state shown in the
“before” picture is a perfect match to what MAME shows when
booting in 32-bit mode prior to the bad CAS instruction. See for
yourself:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-42.png

DO 00000022

o1 00005640 [popoo022 40R43BD8
D2 40415509 N 0p00S640 FFFFBFBA
¢ 00800000 | 40R16500 FFFF7304
DS 00000000 | FFFFFFF6 40A16ABA
D7 00030011 00800000 JOA0D9AEG
A0 40843808 | 00000000 0DOFC870
AL FFEFSFBA L 0OOFFFFC ODOFCRAED
A3 40416484 || 00030011 ODOFCGBC
A4 40A09AES

A5 O00FCBT0

Ab QDOFCAED

A7 OODOFCEBC v |

If your brain is fried after reading all this, first of all I don’t blame
you at all, and second, let me bring everything together to explain
what this all means:

I’ve discovered an undocumented MC68030 instruction that
performs a read-modify-write bus cycle and also changes the
value of the A1 register.

This newly-discovered instruction turns out to be the glue that’s
accidentally holding the Classic II together. Without this instruction
modifying Al, the Classic II can’t boot. I’m confident that it was a
mistake and not something intentional. A totally understandable
mistake, at that. If the pesky 68030 hadn’t been hiding the bug from
Apple’s ROM developers, there 1s no doubt they would have caught
it before the Classic II shipped.

I searched deeper and found the same chunk of code in the newer
Macintosh IIvx ROM, and in that ROM they finally increased the
size of the jump table. I confirmed that the case for the Classic II in
that code does nothing at all. It just jumps directly to an RTS
instruction. I wonder 1f the Apple ROM developer working on that
chunk of code in the IIvx ROM scratched their head in confusion

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-43.png

when they added new entries for a bunch of new models, including
the Classic II, after the Classic II ROM had already been finalized
and shipped. Who knows? I’m not sure how Apple handled all the
different ROM variants back then.

Because of this new discovery, I think it’s very likely that there is
not a 100% perfect Motorola MC68030 emulator or replica in
existence right now. This might be the only case in existence where
it matters though. What this means is I could write a small chunk of
code that determines whether it’s running on a physical 68030 or an
emulator, by simply using that instruction and looking at the
resulting value of Al.

What can MAME do 1n order to work around this problem and
allow the Classic II to boot? We don’t really know the exact details
of what this instruction does. With some limited testing, I believe
I’ve observed that the resulting value of A1 depends on the original
Al value, the value of A7, and the program counter. But I’'m not
sure. Maybe someone can make a program that tries out a bunch of
different register values and memory contents, and attempt to
deduce what exactly the instruction does so that it can be emulated
accurately. Until someone decides that 1t’s worth trying to figure
out, MAME is patching this bug out of the ROM in order to allow
the Classic II to boot. As Arbee pointed out, we’re a little late to get
Motorola/Freescale/NXP to issue an errata. Unless someone who
worked on the 68030 happens to see this post and might have a clue
about what’s going on here...

Here’s a screenshot of MAME with Arbee’s patch applied, now able
to successfully emulate a Classic II with 32-bit addressing enabled.
Yay!

https://github.com/mamedev/mame/commit/56af26b77aa5d564cefad4ae2f435ee155b1409d#diff-2ed507da8835078a892501397a58bcd18e52779493b97e3c2d550c52dedce3e2
https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/page-2#post-551578

#M Macintosh Classic Il [macclas2] - MAME 0.273 (LLP&4) — O .
& File Edit e Labei Special (7]

emory

Disk Cache Cache Size
Always On

Virtual Mernory : R EEEE

() On Avvailable on dizk: 117M
A ailable built=in rernary @ 2M

S2-B1t Addressing

llEl on
() off

| Use Defaults |

After all that, what’s the lesson we can learn from this story? I guess
it’s that emulators can teach us new things about hardware that we
never would have thought to look into! I bet this bug in the ROM
would have gone undiscovered for all eternity if not for MAME
providing emulation of the Classic II, which 1sn’t a particularly

notable machine compared to more popular compact Macs like the
SE/30 and Color Classic.

It also goes to show you how bugs can be lurking in the background
in places where you might think everything is totally polished. I
think 1it’s also a good example of how some bugs just aren’t that big

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-44.png

of a deal. This bug fits that category pretty well. The machine
worked fine and nobody noticed.

Oh, and as for the original reason I somehow managed to pull
myself into this investigation in the first place: the command-+power
key combination does not work in MAME. Now that I have a real
Classic II, I have been able to confirm that the keystroke does
indeed work on hardware. It only works with MacsBug installed,
which is likely due to what I said earlier about the Egret disabling it
by default. Either way, it really should work in MAME when
MacsBug is installed. I suppose that’s another MAME fix for me to
work on!

Address: https://www.downtowndougbrown.com/2025/01/the-
invalid-68030-instruction-that-accidentally-allowed-the-mac-
classic-1i-to-successfully-boot-up/

« Easy repair of a defective NZXT Signal 4K30 capture card

The gooey rubber that’s slowly ruining old hard drives »

Trackback

29 comments

1. Dan Allen @ 2025-01-25 13:58

Thanks for an interesting writeup. I followed it all with

interest as I was in the developer of MacsBug at Apple from
1985 until 1988.

I mainly worked on the first 3 generations of Macintosh, like
the Mac II, Mac SE, Mac Plus, etc.

I miss using MacsBug!

https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/easy-repair-of-a-defective-nzxt-signal-4k30-capture-card/
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/trackback/

Dan Allen
ex Apple (1985-1994)
2. Doug Brown @ 2025-01-25 14:18

b

Wow, thanks for your comment, Dan! I’m honored that you
were able to read my writeup. I am too young to have used
MacsBug for development during the time when it was
heavily used, but I’ve gotten a lot of great use out of it
recently while experimenting with these Macs from the era.
Thank you for all the work you did on MacsBug! It truly 1s an
excellent piece of software.

3. Dan Allen @ 2025-01-25 16:55

Thank you Doug for your kind words.

Dan

4. tim lindner (@ 2025-01-25 20:36

g@#:

I had something like this recently happen the Mame’s Color
Computer driver. A game loader was using an undocumented
instruction intentionally.

Fortunately we have someone in our community to really dig
into undocumented 6809 instructions.
https://github.com/hoglet67/6809Decoder/wiki/Undocumented-
6809-Behaviours

5. Christian Zietz (@ 2025-01-26 00:06

http://www.downtowndougbrown.com/
http://tlindner.macmess.org/
https://github.com/hoglet67/6809Decoder/wiki/Undocumented-6809-Behaviours
https://github.com/hoglet67/6809Decoder/wiki/Undocumented-6809-Behaviours

Really nice debugging and write-up!

I encountered similar weird behavior while debugging
differences between a real Atari TT and an emulator. (The
Atar1 TT has a 68030 CPU, too.) What I learned from that:
Setting reserved bits in the extension word of the instruction
does NOT cause an illegal instruction exception. It is even
documented that it won’t. Instead, all sorts of
undocumented/undefined behavior can be triggered with
“illegal” extension words.

. Bob Felts @ 2025-01-26 10:26

I miss the 68K, Macsbug, MacNosy, and MPW.

Are you sure the CAS 1sn’t triggering an illegal instruction

exception and the handler isn’t doing something screwy with
Al?

CAS was a wonderful instruction, but atomicity was lost
when the address was that of a NuBus peripheral.

. Doug Brown @ 2025-01-26 11:02

>

Very cool link Tim! I wonder if this will lead to a similar
analysis of the 68000 series.

Thanks, Christian! Yeah, that seems to be the case — if the
first word 1s valid, 1t won’t be treated as an illegal instruction.

http://www.downtowndougbrown.com/

Funny that you mention the Atari TT. I recently bought a hard
drive that ended up being from somebody’s TT or Falcon (not
sure which). Sadly I couldn’t boot the image in an emulator
because it crashes during boot.

Bob, yes I am absolutely positive that it’s not being treated as
an illegal instruction. If I change it to a real illegal instruction
like OXFFFF and step into it, MacsBug notices and says
“Unimplemented Instruction at xxxxxxxx’’. That doesn’t
happen with this instruction. It would be interesting for some
of the Amiga and Atari folks to see i1f they can reproduce my
results on an 030 too.

. Christian Zietz (@ 2025-01-26 11:07

I tried the instruction sequence from the article (“Ox0CEC
0x08A9 0x0004”) in an Atari upgraded with a 68020. It does
similar weird things as you observed on the 68030, writing to
(A4+4) and altering A1l in the process. Like you, I couldn’t
deduce the actual “formula” for A1l.

(My Atari TT and Falcon are in storage right now, which is
why I couldn’t test it on a 68030. But 1t’ll most likely be the
same.)

. Doug Brown @ 2025-01-26 11:13

Thanks Christian! That’s great to see you reproduce it on a

machine other than a Mac. Also interesting that it happens on
the 68020 as well.

http://www.downtowndougbrown.com/

10.

11.

An interesting comment on the English Amiga Board by Toni
Wilen points out that one of the bits that 1s 1 (probably bit 3?)
may be choosing whether the D1 is really an A1, but it returns
weird results. I’'m guessing by changing bits 0-2 it will change

which address register it messes with.
Doug Brown @ 2025-01-26 11:40

Yeah, confirmed. If I change the low byte of the second word
so that it’s 0xA8 through OxAF, it changes A0 through A7
respectively. If T use 0xAO through O0xA7 instead (turning off
bit 3), it changes DO through D7 respectively (and seems to
act more like a real CAS instruction, but I didn’t test
extensively).

Doug Brown @ 2025-01-26 19:20

A couple more things to mention:

MAME'’s debugger now has a fix for how it showed a wrong
register in CAS instructions (even valid ones). Just to be clear,
this 1s a minor unrelated thing I touched on in the post, not a
fix for the execution of the undocumented instruction.

I realized that there was a confusing point toward the end of
the article. Without the CAS instruction fixing the address, a
real Classic II crashes regardless of whether you’re in 24-bit
or 32-bit mode. The fact that it didn’t crash in 24-bit mode

during my initial testing in the emulator 1s a MAME-specific
thing. MAME doesn’t signal a bus error on the bad access in
24-bit mode, even though hardware does. I shouldn’t have

https://eab.abime.net/showthread.php?t=119691
https://eab.abime.net/showthread.php?t=119691
http://www.downtowndougbrown.com/
http://www.downtowndougbrown.com/
https://github.com/mamedev/mame/commit/748bef667b24ed9ef975205708ba5058776a513b
https://github.com/mamedev/mame/commit/748bef667b24ed9ef975205708ba5058776a513b

12.

13.

14.

made the comment about how Apple’s developers obviously
didn’t develop only in 24-bit mode, because it was completely
irrelevant. It would have crashed either way if the 68030’s
CAS instruction wasn’t fixing Al. I removed that sentence

from the article, hopefully it’s less confusing now.
Jim Murphy @ 2025-01-26 20:16

Doug,

This was some very good detective work, and could have
been a great KON & BAL’s Puzzle Page back in the old
Develop magazine.

I was the lead maintainer of MacsBug from 1993 until it was
retired in the early 2000s.

Jim
still @Apple
The invalid 68030 instruction that accidentally allowed the

Mac Classic II to successfully boot up — OSnews @ 2025-01-
28 06:23

[...] € Doug Brown [...]

Zafer Akgali @ 2025-01-28 10:02

If somebody knows the instruction 1s, Jim Drew from utilites
unlimited. if you can reach him now, you can ask.

https://en.m.wikipedia.org/wiki/MacsBug
https://www.osnews.com/story/141616/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.osnews.com/story/141616/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/

15.

16.

17.

Zafer Akgali @ 2025-01-28 10:14

Jim Drew may be the admin in that forum, and you can ask
him questions:
https://www.cbmstuff.com/forum/forumdisplay.php?fid=49

James Burgess (@ 2025-01-28 11:34

This is fascinating! I had built hardware and worked on
compilers for m68k at college before ever seeing a Macintosh
in 1993. My first reaction was, wait a minute, my code can
crash this machine, what the heck...!? A year in I was loving
MacsBug on my IIfx. Dan Allen thank you for such a
delightful tool! I really miss programming that way, was
mostly using ThinkC (instant incremental linking!) with the
occasional chunks of assembler so debugging with MacsBug.
Not much improvement since then in developer tools.
Intellisense 1s about all I can think of.

SkYhAwK (@ 2025-01-29 00:45

Interesting would be to know how the misconstructed CAS
instruction ended up like that in ROM. C compilers don’t emit
CAS instructions, so it could be only a buggy assembler,
manual hex entry by the coder, or simply random/trashed byte
sequence that happens to resemble a misconstructed CAS
instruction.

https://www.cbmstuff.com/forum/forumdisplay.php?fid=49

18.

19.

Doug Brown @ 2025-01-29 07:09

Thank you all for your comments!

SkYhAwK, I covered that in the article. The assembler didn’t
assemble a CAS instruction. What happened is a bug in the
ROM is jumping into the middle of an intended instruction,
which just so happens to start with the same pattern that a
CAS instruction would start with.

Peter Jerde @ 2025-01-29 09:32

What a great story, and a wonderful writeup! Thank you!

I wonder when 1t will be possible to emulate the *hardware*
of a processor like the 68030 at the gate level. I know the
6502 has been done — I think you can actually watch an
animation of one operating in “real time” somewhere on the
web.

Being able to emulate the VLSI chips from machines of that
era will be great, too, assuming there will ever be a way to
reconstruct them virtually. I wish more companies would
consider publishing the technical documents from their vaults
for stuff from more than twenty years ago, before such details
truly get lost to the sands of time. Though it’s amazing what
work has been done decapping and photographing the silicon
to reverse engineer these things. I recently ran across a 74 MB
jpeg image of the SWIM disk controller chip’s gates, for
example. Amazing.

http://www.downtowndougbrown.com/

20. Doug Brown (@ 2025-01-29 11:59

Jim, I’m sorry that it took so long for your comment to show
up. It ended up being incorrectly marked as spam by Akismet.
Thank you for your comment, and I’'m glad you were able to
read my writeup! Thank you for all your hard work on
MacsBug as well!

Thanks Peter! I agree with what you’re saying. I think I saw
the 6502 gate level emulation you are talking about. I too
would love to see some of the old technical details published
publicly so that we can preserve everything.

21. David Shayer @ 2025-01-29 14:52

That’s an awesome tale! What a fun bug to track down. Jim
Murphy i1s right, that could have been in Kon & Bal’s Puzzle
Page 1n the old Apple Develop magazine.

I loved working on the classic Mac. The system was small
enough that an engineer could understand most of it, and
disassemble it all with tools like Macsbug. Modern OSes are
so large and complex that there’s no way for even a very
skilled engineer to understand more than a small part in depth.

I taught classes on debugging with Macsbug in Apple
engineering, and I co-wrote the Macsbug Reference and
Debugging Guide.

http://www.downtowndougbrown.com/

22.

23.

https://www.amazon.com/Macsbug-Reference-Debugging-
Guide-Technical/dp/0201567679

If you’re doing this kind of work, you must read How to
Write Macintosh Software by Scott Knaster. It’s all about how
the internals of classic Mac OS really works.

Doug Brown @ 2025-01-29 19:52

Hi David,

Thanks! You’re absolutely right, it was a lot of fun. And an

excuse to buy another Classic Mac & [know what you mean
about how everything was small enough to understand so
much about it back then. Plus, I am a big fan of the 68000-
series assembly. I find 1t so much easier to read than some of
the other architectures, although ARM is pretty nice too.

That is really cool that you were one of the authors of Apple’s
MacsBug book! It sounds just like what I need to look at. It
has been really fun hearing from several Apple folks from the
time who were heavily involved with MacsBug. I'm so glad
you all have been commenting! I think it would be cool if one
of the ROM developers ends up seeing this. I wonder if any of
them knew that this sneaky little “bug” existed. I put it in
quotes since it didn’t actually cause any problems.

Thank you for the book recommendation. I’ll check it out!
Sounds like everyone should check out some of the old
Develop magazines too, since both you and Jim mentioned it!

Mark Lentczner (@ 2025-01-31 11:25

https://www.amazon.com/Macsbug-Reference-Debugging-Guide-Technical/dp/0201567679
https://www.amazon.com/Macsbug-Reference-Debugging-Guide-Technical/dp/0201567679
http://www.downtowndougbrown.com/

24.

25.

26.

3

Fantastic work!

What memories... I was on the Mac team from 85 though 89,
and this machine was after me. But I spent tons of time in
macsbug and coding 680%0 by hand. I was the co-developer
of the Apple Sound Chip, so it was extra fun to see the tie-in,
here.

Doug Brown @ 2025-01-31 21:12

b

Thanks Mark! Wow, that’s really cool! I spent a lot of time a
while ago learning how to interact directly with the ASC in
order to customize my Ilci by giving it a special sampled
startup sound instead of the original one played with the wave
table synthesizer. It was a neat little chip.

The Mac Classic II Shouldn't Have Worked — 512 Pixels @
2025-02-07 07:30

[...] The Mac Classic II Shouldn’t Have Worked — [...]

Ed Rupp @ 2025-02-07 17:59

Nice sleuthing... I agree that bit3 is what is modifying D1 to
A1l and suspect that bit9 would also affect Du. Illegal opcode
decoding is probably not smart enough to look at bits beyond
the first 2 (or MAYBE 4) bytes. I worked at Motorola Austin
from 78-89 and wrote the microcode assembler for the 68020.
Up to that point, the microcode was done on 3x5 cards...

http://www.downtowndougbrown.com/
https://www.downtowndougbrown.com/2011/08/mac-iici-custom-startup-chime-part-ii/
https://www.downtowndougbrown.com/2011/08/mac-iici-custom-startup-chime-part-ii/
https://512pixels.net/2025/02/the-mac-classic-ii-shouldnt-have-worked/

27.

28.

29.

Unrelated, but maybe interesting: At some point I was asked
(maybe by an Apple programmer?) what instruction caused
the most potential page faults. I think the answer was CAS2
because it could touch two unrelated memory addresses and
the instruction could straddle 2 pages. So 6 potential page
faults for this instruction.

Doug Brown @ 2025-02-07 19:33

Thanks, Ed! That makes sense about bit 9. Very cool that you
wrote the microcode assembler for the 68020. It sounds like
the 68020 has very similar behavior to what I observed on the
030 based on comments from others. Wow...3x5 cards for the

microcode...can only imagine what that would have been
like!

6 page faults in a single instruction, that would be a lot!

Alex Rosenberg @ 2025-02-11 10:03

oo

Ed, we asked that question about page faults at one of the
Apple WWDC Stump the Experts nights. IIRC the answer at
that time was a MOVE16 from the ‘040 and 1t was a lot more
than six faults.

Ed Rupp @ 2025-02-11 13:30

Nick Tredennick wrote the 68000 microcode and used 3x5
cards. The 68010 was a close derivative and I think still used

http://www.downtowndougbrown.com/

the cards. Doug MacGregor wrote the 68020 microcode.
Design verification was done by building the whole processor
with 74xx TTL on giant wire-wrap boards.

The 6 faults was for the ‘030. I never investigated the
maximum for the ‘040, but MOVE16 sounds right. The last
thing I did on the ‘040 was to clean up the floating point
emulation layer. I think the code eventually got released to the
Linux kernel but that was after I left. At the time, the ‘040
held the record for most mask layer revisions before
production, I think...

Add your comment now

Name (required)

Email (Will NOT be published)

(required)

URL

Submit

« Subscribe

e,

Y] in

https://twitter.com/dt_db
https://twitter.com/dt_db
https://www.youtube.com/user/doogulass
https://www.youtube.com/user/doogulass
https://github.com/dougg3
https://github.com/dougg3
https://www.linkedin.com/in/doug-brown-60100519
https://www.linkedin.com/in/doug-brown-60100519

. Recent Posts

o The gooey rubber that’s slowly ruining old hard drives
o The invalid 68030 instruction that accidentally allowed

the Mac Classic II to successfully boot up

Easy repair of a defective NZXT Signal 4K30 capture
card

How webcams with focus control work (Razer Kiyo
Pro repair)

The capacitor that Apple soldered incorrectly at the
factory

Hardware repair of an Elgato HD60 S that only worked
on Mac

Are wireless gamepads terrible? Mario Maker TAS
playback with an RP2040

Fixing an Elgato HD60 S HDMI capture device with
the help of Ghidra

. Categories

O O O 0O O 0o O O OO O O

Chumby 8 kernel (13)
Classic Mac (11)
Computer repair (10)
Electronics repair (8)
108 (3)

Linux (43)

Mac ROM hacking (11)
Microcontroller lessons (11)
Microcontrollers (4)
Product reviews (5)
Python (1)

Qt (5)

https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/easy-repair-of-a-defective-nzxt-signal-4k30-capture-card/
https://www.downtowndougbrown.com/2025/01/easy-repair-of-a-defective-nzxt-signal-4k30-capture-card/
https://www.downtowndougbrown.com/2024/12/how-webcams-with-focus-control-work-razer-kiyo-pro-repair/
https://www.downtowndougbrown.com/2024/12/how-webcams-with-focus-control-work-razer-kiyo-pro-repair/
https://www.downtowndougbrown.com/2024/11/the-capacitor-that-apple-soldered-incorrectly-at-the-factory/
https://www.downtowndougbrown.com/2024/11/the-capacitor-that-apple-soldered-incorrectly-at-the-factory/
https://www.downtowndougbrown.com/2024/10/hardware-repair-of-an-elgato-hd60-s-that-only-worked-on-mac/
https://www.downtowndougbrown.com/2024/10/hardware-repair-of-an-elgato-hd60-s-that-only-worked-on-mac/
https://www.downtowndougbrown.com/2024/10/are-wireless-gamepads-terrible-mario-maker-tas-playback-with-an-rp2040/
https://www.downtowndougbrown.com/2024/10/are-wireless-gamepads-terrible-mario-maker-tas-playback-with-an-rp2040/
https://www.downtowndougbrown.com/2024/09/fixing-an-elgato-hd60-s-hdmi-capture-device-with-the-help-of-ghidra/
https://www.downtowndougbrown.com/2024/09/fixing-an-elgato-hd60-s-hdmi-capture-device-with-the-help-of-ghidra/
https://www.downtowndougbrown.com/category/chumby-8-kernel/
https://www.downtowndougbrown.com/category/classic-mac/
https://www.downtowndougbrown.com/category/computer-repair/
https://www.downtowndougbrown.com/category/electronics-repair/
https://www.downtowndougbrown.com/category/ios/
https://www.downtowndougbrown.com/category/linux/
https://www.downtowndougbrown.com/category/mac-rom-hacking/
https://www.downtowndougbrown.com/category/microcontroller-programming/
https://www.downtowndougbrown.com/category/microcontrollers/
https://www.downtowndougbrown.com/category/product-reviews/
https://www.downtowndougbrown.com/category/python/
https://www.downtowndougbrown.com/category/qt/

o Reverse engineering (3)
o Uncategorized (20)
o Windows (7)

. Archives

March 2025 (1)
January 2025 (2)
December 2024 (1)
November 2024 (1)
October 2024 (2)
September 2024 (1)
August 2024 (1)
July 2024 (3)

June 2024 (4)

May 2024 (1)
April 2024 (2)
December 2023 (1)
November 2023 (2)
September 2023 (3)
August 2023 (3)
June 2023 (1)

May 2023 (1)
April 2023 (1)
March 2023 (2)
January 2023 (1)
December 2022 (3)
August 2022 (1)
May 2022 (2)
March 2022 (1)
December 2021 (1)
June 2021 (1)

O O O O O O OO OO OO OO OO 00 0 0 o o o o o o

https://www.downtowndougbrown.com/category/reverse-engineering/
https://www.downtowndougbrown.com/category/uncategorized/
https://www.downtowndougbrown.com/category/windows/
https://www.downtowndougbrown.com/2025/03/
https://www.downtowndougbrown.com/2025/01/
https://www.downtowndougbrown.com/2024/12/
https://www.downtowndougbrown.com/2024/11/
https://www.downtowndougbrown.com/2024/10/
https://www.downtowndougbrown.com/2024/09/
https://www.downtowndougbrown.com/2024/08/
https://www.downtowndougbrown.com/2024/07/
https://www.downtowndougbrown.com/2024/06/
https://www.downtowndougbrown.com/2024/05/
https://www.downtowndougbrown.com/2024/04/
https://www.downtowndougbrown.com/2023/12/
https://www.downtowndougbrown.com/2023/11/
https://www.downtowndougbrown.com/2023/09/
https://www.downtowndougbrown.com/2023/08/
https://www.downtowndougbrown.com/2023/06/
https://www.downtowndougbrown.com/2023/05/
https://www.downtowndougbrown.com/2023/04/
https://www.downtowndougbrown.com/2023/03/
https://www.downtowndougbrown.com/2023/01/
https://www.downtowndougbrown.com/2022/12/
https://www.downtowndougbrown.com/2022/08/
https://www.downtowndougbrown.com/2022/05/
https://www.downtowndougbrown.com/2022/03/
https://www.downtowndougbrown.com/2021/12/
https://www.downtowndougbrown.com/2021/06/

O O O OO OO OO OO OO OO 0 OO OO0 OO0 OO0 O 0 O O o o o o o

April 2021 (1)
January 2021 (1)
September 2020 (1)
August 2020 (1)
July 2020 (1)

May 2020 (1)

June 2019 (1)
April 2019 (1)
December 2018 (1)
August 2018 (1)
May 2018 (1)
April 2018 (3)
February 2018 (1)
October 2017 (1)
July 2017 (1)

May 2017 (3)
March 2017 (1)
October 2016 (1)
June 2015 (1)
March 2015 (1)
November 2014 (1)
August 2014 (3)
July 2014 (1)

April 2014 (1)
March 2014 (1)
February 2014 (1)
November 2013 (1)
August 2013 (1)
June 2013 (3)
April 2013 (1)
March 2013 (1)
January 2013 (2)
December 2012 (2)

https://www.downtowndougbrown.com/2021/04/
https://www.downtowndougbrown.com/2021/01/
https://www.downtowndougbrown.com/2020/09/
https://www.downtowndougbrown.com/2020/08/
https://www.downtowndougbrown.com/2020/07/
https://www.downtowndougbrown.com/2020/05/
https://www.downtowndougbrown.com/2019/06/
https://www.downtowndougbrown.com/2019/04/
https://www.downtowndougbrown.com/2018/12/
https://www.downtowndougbrown.com/2018/08/
https://www.downtowndougbrown.com/2018/05/
https://www.downtowndougbrown.com/2018/04/
https://www.downtowndougbrown.com/2018/02/
https://www.downtowndougbrown.com/2017/10/
https://www.downtowndougbrown.com/2017/07/
https://www.downtowndougbrown.com/2017/05/
https://www.downtowndougbrown.com/2017/03/
https://www.downtowndougbrown.com/2016/10/
https://www.downtowndougbrown.com/2015/06/
https://www.downtowndougbrown.com/2015/03/
https://www.downtowndougbrown.com/2014/11/
https://www.downtowndougbrown.com/2014/08/
https://www.downtowndougbrown.com/2014/07/
https://www.downtowndougbrown.com/2014/04/
https://www.downtowndougbrown.com/2014/03/
https://www.downtowndougbrown.com/2014/02/
https://www.downtowndougbrown.com/2013/11/
https://www.downtowndougbrown.com/2013/08/
https://www.downtowndougbrown.com/2013/06/
https://www.downtowndougbrown.com/2013/04/
https://www.downtowndougbrown.com/2013/03/
https://www.downtowndougbrown.com/2013/01/
https://www.downtowndougbrown.com/2012/12/

August 2012 (1)
July 2012 (2)

June 2012 (1)

May 2012 (1)
February 2012 (3)
January 2012 (1)
November 2011 (1)
October 2011 (2)
August 2011 (3)
May 2011 (1)

April 2011 (1)
March 2011 (2)
November 2010 (2)
October 2010 (3)
July 2010 (5)

O O O 0O O 0O O O O OO OO O O

« Recent Comments

o Doug Brown on The gooey rubber that’s slowly ruining
old hard drives

o Steve on The gooey rubber that’s slowly ruining old
hard drives

o Chris on The gooey rubber that’s slowly ruining old
hard drives

o Ed Rupp on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up

o Alex Rosenberg on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up

o Doug Brown on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully

https://www.downtowndougbrown.com/2012/08/
https://www.downtowndougbrown.com/2012/07/
https://www.downtowndougbrown.com/2012/06/
https://www.downtowndougbrown.com/2012/05/
https://www.downtowndougbrown.com/2012/02/
https://www.downtowndougbrown.com/2012/01/
https://www.downtowndougbrown.com/2011/11/
https://www.downtowndougbrown.com/2011/10/
https://www.downtowndougbrown.com/2011/08/
https://www.downtowndougbrown.com/2011/05/
https://www.downtowndougbrown.com/2011/04/
https://www.downtowndougbrown.com/2011/03/
https://www.downtowndougbrown.com/2010/11/
https://www.downtowndougbrown.com/2010/10/
https://www.downtowndougbrown.com/2010/07/
http://www.downtowndougbrown.com/
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544146
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544146
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544143
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544143
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544140
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544140
http://www.downtowndougbrown.com/

boot up

o Ed Rupp on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up

o The Mac Classic II Shouldn't Have Worked — 512
Pixels on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up

o Doug Brown on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up

o Mark Lentczner on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up

- Spam Blocked

Downtown Doug Brown - coogee theme - 2008 - Privacy Policy
RSS Feed - WordPress - TOP

https://512pixels.net/2025/02/the-mac-classic-ii-shouldnt-have-worked/
https://512pixels.net/2025/02/the-mac-classic-ii-shouldnt-have-worked/
http://www.downtowndougbrown.com/
https://akismet.com/
https://www.downtowndougbrown.com/
http://imotta.cn/
https://www.downtowndougbrown.com/privacy-policy/
https://www.downtowndougbrown.com/feed/
http://wordpress.org/

