
Downtown Doug Brown
Thoughts from a combined
Apple/Linux/Windows geek.

Home
About
Mac ROM SIMMs
Software
Microcontroller lessons
Contact

Jan
25

The invalid 68030 instruction that
accidentally allowed the Mac Classic II to
successfully boot up

Doug Brown Classic Mac, Reverse engineering 2025-01-25

This is the story of how Apple made a mistake in the ROM of the
Macintosh Classic II that probably should have prevented it from
booting, but instead, miraculously, its Motorola MC68030 CPU
accidentally prevented a crash and saved the day by executing an
undefined instruction.

https://www.downtowndougbrown.com/
https://www.downtowndougbrown.com/
https://www.downtowndougbrown.com/about/
https://www.downtowndougbrown.com/programmable-mac-rom-simms/
https://www.downtowndougbrown.com/software/
https://www.downtowndougbrown.com/microcontroller-lessons/
https://www.downtowndougbrown.com/contact/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/category/classic-mac/
https://www.downtowndougbrown.com/category/reverse-engineering/

I’ve been playing around with MAME a lot lately. If you haven’t
heard of MAME, it’s an emulator that is known best for its support
of many arcade games. It’s so much more than that, though! It is
also arguably the most complete emulator of 68000-based Mac
models, thanks in large part to Arbee‘s incredible efforts. I will
admit that I’ve used MAME to play a game or two of Teenage
Mutant Ninja Turtles: Turtles in Time, but my main use for it is Mac
emulation.

Here’s how this adventure begins. I had been fixing some issues in
MAME with the command + power key combination that invokes
the debugger, and decided to see if the keystroke also worked on the
Classic II. Even though this Mac model has a physical interrupt
button on the side, it also has an “Egret” 68HC05 microcontroller
for handling the keyboard and mouse (among other things) that
should be able to detect the keypress and signal a non-maskable
interrupt to the main CPU. I believe the Egret disables this
keystroke by default, but MacsBug contains code that sends the
command to enable it.

I didn’t get very far while testing the command+power shortcut in
MAME’s emulated Classic II, because I observed something very
odd. It booted up totally fine in 24-bit addressing mode, but I could
not get it to boot at all if I enabled 32-bit addressing, which I needed
in order for MacsBug to load. It would just pop up a Sad Mac,
complete with the Chimes of Death. On this machine, the death
chime is a few notes from the Twilight Zone theme song.

https://www.mamedev.org/
https://rbelmont.mameworld.info/
https://en.wikipedia.org/wiki/Teenage_Mutant_Ninja_Turtles:_Turtles_in_Time
https://en.wikipedia.org/wiki/Teenage_Mutant_Ninja_Turtles:_Turtles_in_Time
https://github.com/mamedev/mame/commit/178e9fee20c508ca3c1125c2f211c43c8c848f6e
https://github.com/mamedev/mame/commit/178e9fee20c508ca3c1125c2f211c43c8c848f6e
https://github.com/mamedev/mame/commit/178e9fee20c508ca3c1125c2f211c43c8c848f6e
https://en.wikipedia.org/wiki/MacsBug
https://en.wikipedia.org/wiki/Macintosh_startup#Sad_Mac
https://en.wikipedia.org/wiki/Macintosh_startup#Chimes_of_Death

If you’re not familiar with Apple’s whole 24-bit versus 32-bit
addressing saga, I’ll briefly summarize it for you here. The original
Motorola 68000 processor only had 24 address lines even though it
used 32 bits internally for addresses. Apple took those eight extra
otherwise unused bits and repurposed them for storing flags as a
way to save on RAM, which was scarce at the time. When newer
machines/processors came out that supported a full 32-bit address
space, the upper byte couldn’t be used for flags anymore. Because
of that discrepancy, old software would have been incompatible, so
newer machines had two modes: 24-bit mode for compatibility with
older software, and 32-bit mode for being able to use all of your
RAM.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-29.png
https://en.wikipedia.org/wiki/Classic_Mac_OS_memory_management#32-bit_clean
https://en.wikipedia.org/wiki/Classic_Mac_OS_memory_management#32-bit_clean

So why was the Classic II failing to boot in 32-bit mode in MAME?
What was broken? Arbee also reproduced the issue, so at least I
knew I wasn’t losing my mind. I assumed it was a random bug in
MAME, so I started looking deeper into it to try to understand what
needed to be fixed.

According to an old Apple Tech Info Library article, 0000000F
means an exception occurred and 00000001 means the exception
was a bus error. A bus error on 68k Macs typically means that
something tried to access an invalid address, like if you try to read
from or write to an expansion card when there isn’t one installed.

What was the invalid address being accessed? I decided to step
through the code using MAME’s amazing debugger to understand
what was leading to the crash. Comprehending what’s going on in
the ROM with no context at all can be tricky, but luckily, Apple
included symbol maps for a bunch of Mac ROMs with Macintosh
Programmer’s Workshop (MPW). MPW was Apple’s development
environment.

Tracing backwards from the actual Sad Mac screen would be
difficult, because there is a ton of code involved in setting up and
displaying the screen. To make it easier on myself, I decided I
would set a breakpoint on the bus error handler and then look
backwards from there. The 68030’s vector table starts at the very
beginning of the address space, and the bus error vector is at
0x00000008. With the Sad Mac error still on the screen, here’s what
memory looked like at that location:

http://absurdengineering.org/library/MASTER%20Tech%20Info%20Library/Hardware%20Troubleshooting%20&%20Service%20Issues/TIL07748%20-%20Macintosh%20-%20Sad%20Mac%20Error%20Code%20Meaning%20(11-95).pdf
https://en.wikipedia.org/wiki/Macintosh_Programmer%27s_Workshop
https://en.wikipedia.org/wiki/Macintosh_Programmer%27s_Workshop

This meant the bus error handler was at 0x40A026F0, which is also
known as GenExcps in the ROM map. I performed a hard reset of
the emulated machine, set a breakpoint on that address, and then
waited until it hit the breakpoint. It looks like GenExcps is a big list
of BSR instructions that all jump to 0x40A026A0, which is
common error handling code identified in the ROM map as
ToDeepShit. Nice name, Apple!

Anyway, since MAME hit my breakpoint, this meant Apple’s
technote was correct about it being a bus error. I was able to use the
MAME debugger’s history command to show a backtrace of

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-26.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-32.png

instructions that led to this point. The end of the history output is
displayed in the bottom pane of the screenshot below:

If we walk upwards, we can see that the instruction that caused the
bus error was at 0x40A43B9C:

I opened up this section of code in IDA, which I still find myself
using with 68k Mac stuff because I’m used to it. It was pretty
clearly part of the routine that starts at 0x40A43B40, which is
helpfully labeled in the ROM map as InstallSoundIntHandler. Let’s
look at the whole function in more depth.

1 move.b #$90, ($1c00,A1)

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-33.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-3.png

The first thing it does is immediately jump to V8SndIntPatch1. This
appears to be something that was patched into this ROM for
handling sound initialization for the V8. For some added context,
the Classic II isn’t powered by an eight-cylinder gasoline engine;
V8 is the name of the custom chip that Apple first used in the
Macintosh LC. From the LC hardware developer note:

Why are we talking about the LC here? Well, the reason is because
the Classic II is architecturally based more on the LC than the
original Macintosh Classic. Here’s an explanation from the
corresponding developer note for the Classic II:

The text description of the EAGLE gate array is very similar to that
of the V8, so it should come as no surprise that the chips themselves
are very similar too. MAME handles them both in the same source
file. The point I’m trying to make here is that it makes sense that the
Classic II’s ROM has code referring to the V8. With that info out of
the way, let’s look at V8SndIntPatch1:

This chunk of code is calling the Gestalt trap, which is how you
determine various info about the Mac. In particular, it’s using the

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-6.png

gestaltHardwareAttr selector, which is defined as ‘hdwr’ in Apple’s
public header files.

If bit 3 (gestaltHasASC) isn’t set in the response, it bails and
returns. Otherwise, it jumps to V8SndIntPatch1Rtn at 0x40A43B4A,
which you can see in the history trace in the MAME debugger
screenshot from earlier. I went pretty deep into the hardware tables
for the Classic II and can confirm that gestaltHasASC is definitely
set on the Classic II. After all, the EAGLE contains a stripped-down
equivalent of the Apple Sound Chip (ASC).

Now, let’s take a look at V8SndIntPatch1Rtn:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-7.png

Phew! This is a decent amount of code. It’s not that complicated
though. I’ll explain the important stuff. You can see the instruction
that leads to the Sad Mac at 0x40A43B9C. If you start at the top,
what’s happening is it’s loading a byte from RAM at 0xCB3 into
register D0:

If you know where to look out there, you can discover that this
global variable is called BoxFlag and contains a value identifying
which machine you have. If I step through this code in MAME, I
can see that D0 ends up loaded with the value 0x11 = 17, which is
correct for the Classic II.

1
2

moveq #$0,d0
move.b (byte_CB3).w,d0

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-7.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-34.png

Continuing further through the code, some other stuff happens, and
then at 0x40A43B6C the value in D0 ends up being doubled (so it
turns into 0x22). Immediately after this, it is used as an offset in a
jump instruction. Here’s IDA’s syntax for the jump, because it’s
more intuitive than what MAME displays:

Since D0 ends up as 0x22 after being doubled, we jump to
0x40A43B72 + 0x22 = 0x40A43B94, and here’s what that code
looks like in MAME’s debugger when we reach it:

Stepping further through the code, you can see we eventually reach
the instruction that causes a Sad Mac. Let’s see what all the registers
look like before it’s executed:

1
2

add.w d0,d0
jmp loc_40A43B72(pc,d0.w)

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-35.png

Hmm, that’s odd. This crashing instruction writes the value 0x90 to
an offset 0x1C00 bytes past the address stored in A1. A1 is set to
0xFFFF8FBA, so the address where the write occurs at is
0xFFFF8FBA + 0x1C00 = 0xFFFFABBA. This is a totally invalid
address on the Classic II! No wonder we get a Sad Mac. As
expected, as soon as we step into this instruction, instead of
reaching the RTS instruction just below it, we end up in the code
path for displaying a Sad Mac error at 0x40A026F0. This is
definitely where everything craps out.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-36.png

Okay, so now I had a pretty good idea of what was happening in
MAME. A1 had a junk value, so the ROM code was writing to an
invalid address. FFFFABBA dabba doo! I decided to investigate
further to understand how A1 came to be loaded with a bad address.
And that’s when I discovered something really bizarre.

Let’s take a closer look at one of the earlier screenshots, after we
used the value of D0 (BoxFlag) to jump to the correct chunk of code
for the Classic II:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-37.png

I thought about this some more, and eventually realized that
something absolutely crazy happened here. We were supposed to be
jumping into a table of BRA.S instructions, one for each possible
BoxFlag value. That’s why we added D0 to itself before using it as a
jump offset — each BRA.S instruction is two bytes long, so the
index into the table needed to be doubled to turn it into a byte offset.
Why didn’t we end up pointing at a BRA.S instruction? And where
did this CAS.W instruction come from?

If you look closely at the table of branches below the JMP
instruction at 0x40A43B6E, there are only 16 entries in the table,
corresponding to BoxFlags 0 through 15. The Classic II is BoxFlag
17!

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-35.png

As I said earlier, the calculated offset we jump to is 0x40A43B94,
which is not even supposed to be the start of an instruction. It’s
smack dab in the middle of the MOVEA.L instruction at
0x40A43B92, which is the instruction that loads A1 with a real
address that this code can use for enabling the sound interrupt.

When we jump to 0x40A43B94, we aren’t running intended code
anymore. The CPU gets out of sync with the path that the code was
designed to follow. 0x0CEC was supposed to be the second half of
the MOVEA.L instruction — the address in RAM to load from —
but instead, it is being treated as the start of a new instruction.

The CPU doesn’t get back in sync right away. We execute this
mystery CAS (compare and swap) instruction, and then an
unintended “MOVE.B D0, D4” instruction, before finally reaching a
real MOVE.B instruction at 0x40A43B9C — the instruction that

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-38.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-13.png

crashes. That is the point where the CPU has returned to running
code that Apple actually wanted it to run. But unfortunately, A1
contains an invalid address because the code that was supposed to
fill it out wasn’t reached, so of course everything crashes when we
try to write to A1 + 0x1C00. It all makes sense.

Going back further, A1 gets loaded with the “junk” value of
0xFFFF8FBA as part of the initial jump to InstallSoundIntHandler.
So, of course, it’s not really junk. It’s being used as an offset for a
jump instruction:

IDA’s disassembly is a little more readable. That value of
0xFFFF8FBA loaded into A1 represents how much you have to add
to the program counter in order to reach InstallSoundIntHandler
from where you currently are. Interpreting it as signed, it’s a
negative number because that function is further back in the ROM
code.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-39.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-17.png

Overall, I felt that I totally understood what was happening. I’m
probably repeating myself, but I just want it to sink in one more
time: The problematic value in A1 gets loaded as part of a big
relative jump to this section of ROM, and an out-of-bounds table
access is jumping past code that is supposed to load A1 with an
actual address of a peripheral to configure for sound interrupts. So
A1 still contains that negative offset for the jump instead of a real
address. Finally, it ends up being used as an address in a write
operation, and boom, Sad Mac.

If you’ve followed along with me thus far, I’m sure there are some
burning questions on your mind. This explains how MAME fails,
but not why. Why was this happening? Also, why didn’t this same
failure occur on actual hardware? Obviously, the Classic II wasn’t
recalled because of an inability to use 32-bit addressing. There’s no
way that happened. It would have been all over tech news. Not to
mention the fact that the people actually working on the ROM code
would have quickly noticed it while they were testing. It’s kind of a
glaring issue.

So what gives? Was MAME doing something wrong here that didn’t
match hardware? This code couldn’t have really been reached on
hardware, right? I have the answer to these questions, but as a
forewarning, the situation is way more complicated than I expected
it to be.

I started out by trying to understand what the CAS instruction
reached after the out-of-bounds jump was doing. Here are the bytes:

0C EC 08 A9 00 04

I quickly noticed that if I changed my disassembly in IDA so that it
thought the code was supposed to start there, it refused to
disassemble the instruction at all:

When I tried to convert it to code starting at 0x40A43B94, it said:

Command "MakeCode" failed

GNU objdump also failed to disassemble it, and then got right back
in sync with the intended code:

40a43b94: 0cec .short 0x0cec
40a43b96: 08a9 0004 1800 bclr #4,%a1@(6144)
40a43b9c: 137c 0090 1c00 moveb #-112,%a1@(7168)
40a43ba2: 4e75 rts

The fact that two well-known disassemblers balked at this
instruction piqued my curiosity. I decided to use MacsBug on my
Macintosh IIci, which also has a 68030 processor, to put all that
code into RAM at a random location and see what MacsBug thought
about it. Since I was going through all this effort, I also arranged all
the other registers to be identical to what I was seeing on MAME. It
wasn’t a perfect match with what I was seeing in MAME, though; I
had to leave the program counter pointing into RAM instead of
ROM.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-18.png

Interesting — MacsBug also said it was a CAS.W instruction, but it
interpreted it slightly differently. It said it was CAS.W
D1,D2,$0004(A4).

Of course, I couldn’t resist stepping through the code in MacsBug to
see what it would do on a real 68030 processor:

Wait…what? If you compare the register display on the left side of
the screen in the first picture with the same display in the second
picture, something incredibly strange has happened. Even though
MacsBug and MAME both don’t mention A1 in their interpretations
of this CAS instruction at all, the value of A1 has changed! It started
out as 0xFFFF8FBA, and ended up as 0xFC6B8. It seems to have

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/macsbugbefore3.jpg
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/macsbugafter3.jpg

turned into a value similar to what’s in A5 through A7 — a valid
RAM address.

Further tinkering with MacsBug and different register values
revealed that the new value of A1 depended on the original value of
A1, A7, and the program counter. I couldn’t figure out exactly what
it was doing, but it was definitely majorly changing A1’s value.

At this point, I felt like I was onto something. The MAME-emulated
Classic II was crashing because A1 didn’t change, so it still
contained an invalid address. On hardware, this weird instruction,
which several disassemblers refused to touch, and wasn’t even
intended to be jumped to because it starts in the middle of an actual
valid instruction, was changing A1 to a new value that was a good
address. Was this crazy instruction accidentally fixing A1 and thus
hiding a bug from Apple’s ROM developers in the early 1990s?

This was about the time that Arbee suggested I start sharing my
research on the 68kmla forums and the bannister.org forums to see if
some of the incredible folks who know way more than me about the
68k instruction set might be able to chime in. I also asked around on
IRC in #mac68k on Libera.

The consensus was that this is not a valid CAS instruction, and that
MacsBug’s interpretation of the registers being D1 and D2 is
correct. Let’s look at what the Motorola M68000 Family
Programmer’s Reference Manual says about the encoding of the
CAS instruction:

https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/
https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/
https://forums.bannister.org/ubbthreads.php?ubb=showflat&Number=124008
https://www.nxp.com/docs/en/reference-manual/M68000PRM.pdf
https://www.nxp.com/docs/en/reference-manual/M68000PRM.pdf

Comparing this with the 3 words of the instruction (0x0CEC
0x08A9 0x0004) and filling in the fields, we can see the following:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-20.png
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/BadInstruction-1.png

The first word appears to be a valid CAS instruction. The second
word, though, has a few bits that are 1 even though the instruction
format specifically says they are supposed to be 0. I’ve marked them
in red. Also, the Du and Dc fields match what MacsBug says, as
opposed to how MAME interpreted it.

The third word, 0x0004, is the d16 value mentioned in the MODE
field. It’s the $0004 offset from A4. So according to Motorola’s
reference manual, this instruction is:

…except it has three bits that are 1 in places where they are
supposed to be 0. So it’s not a valid instruction at all. At least, it’s
not documented.

Side note: I think MAME’s debugger is also decoding normal CAS
instructions incorrectly; if I change it to 0x0CEC 0x0081 0x0004
instead, which is the correct way to write this instruction without the
three bad “1” bits, it still thinks Du is D0 instead of D2. But that’s
beside the point — the instruction we’re dealing with in this story is
completely messed up either way.

The CAS (compare-and-swap) instruction is an interesting one. It’s
used for accomplishing various atomic operations without requiring
a lock. It is one of the few instructions in the 68000 family CPUs
that perform a read-modify-write bus cycle. What this particular
instruction is supposed to do is compare the word value in memory
at A4 + 4 to the value of D1. If they are the same, then the value in
D2 is written to memory at A4 + 4. Otherwise, the value in memory
at A4 + 4 is loaded into D1.

1 CAS D1,D2,$0004(A4)

https://en.wikipedia.org/wiki/Compare-and-swap

It clearly still does some of this stuff, like the read-modify-write
cycle involving A4 + 4. If I change A4 to point to an invalid
address, MacsBug complains to me. For example, on my Mac IIci
with the same test setup I showed earlier, if I set A4 to 0xFFFF0000
and rerun the bad instruction, MacsBug tells me this:

Bus Error at 0004CB20
while reading word (read-modify-write) from FFFF0004 in
Supervisor data space

This definitely means that this instruction still performs the RMW
cycle at A4 + 4. It doesn’t seem to do exactly what the CAS
instruction is supposed to do though. Obviously, the normal CAS
instruction wouldn’t mess with the value of A1. I ran more tests
after changing A4 to point to RAM. If I store the value 0xFFFF at
A4 + 4, and D1 is set to 0x1111 and D2 is set to 0x2222, then after
executing the instruction, memory at A4 + 4 changes to 0x2222. But
that doesn’t really make any sense, because it only should have
written 0x2222 to memory if D1 was equal to 0xFFFF.

Let’s summarize what we’ve learned so far.

The invalid code that the ROM accidentally jumps to
(0x0CEC 0x08A9 0x0004) is sort of like “CAS
D1,D2,$0004(A4)”, but not really, because some of the bits
that are supposed to be 0 are actually set to 1.
On another 68030-based Mac, I’ve observed that this
instruction ends up modifying the value stored in register A1.
MAME’s 68030 CPU emulator does not change A1 like this,
because the instruction is undocumented and normal code
would never use it.
The Sad Mac in MAME occurs a couple of instructions later
because A1 is set to an invalid address, and code in ROM tries
to write a byte to A1 + 0x1C00.

I was starting to believe something that sounded almost too crazy to
be true: Apple had an out-of-bounds jump bug in the Classic II’s
ROM that should have caused a Sad Mac during boot, but they had
no idea the bug was there because the 68030 was accidentally fixing
the value of A1 by executing an undocumented instruction. How
could I prove that my theory was correct?

By buying a Classic II and hacking the ROM in order to see exactly
what is happening on hardware, of course!

This Classic II was manufactured in 1991, so it’s about 34 years old
at this point. Computers this old usually need to be repaired if
nobody has already fixed them. As I mentioned in a previous post
about the LC III capacitor polarization mistake, the surface mount
capacitors in old Macs leak out corrosive goo over time. This
machine was no exception. I didn’t even try powering it up. I

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/ClassicII.jpg
https://www.downtowndougbrown.com/2024/11/the-capacitor-that-apple-soldered-incorrectly-at-the-factory/
https://www.downtowndougbrown.com/2024/11/the-capacitor-that-apple-soldered-incorrectly-at-the-factory/

immediately opened it up and removed what I believe was the
original Sonnenschein 1/2 AA lithium battery with a March 1991
date code. The battery had not leaked at all, luckily! That’s another
unfortunate thing that happens in a lot of old Macs that have been
sitting around for decades — severe battery damage.

I don’t want to go into excruciating detail about the repair and make
this post even longer to read, but if you’re interested in hearing
more about that process, I posted a few updates about the repair in
my 68kmla forum thread. I did accidentally short /RESET to ground
while soldering in new capacitors, but I eventually got the logic
board working. This was very similar to what happened to Adrian’s
Digital Basement on his SE/30 board a few months ago, but lucky
for me, my accidental short didn’t involve 12 volts and fry a bunch
of chips! Adrian’s channel is an excellent resource for vintage
computer enthusiasts out there, if you’re not already subscribed.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/logicboard.jpg
https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/page-3#post-552591
https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/page-3#post-552591
https://www.youtube.com/watch?v=v8KXPXT4E1U
https://www.youtube.com/watch?v=v8KXPXT4E1U

The Classic II has a cathode-ray tube for its screen, which scares the
crap out of me, so I opted to use a different solution in order to run
the logic board by itself without any dangerous voltages. Plus, the
analog boards in these computers are known to be a huge pain to
repair. This one had really bad capacitor leakage, so that’ll probably
be a future repair project. The bottom line is I knew I’d be installing
and removing ROM chips a bunch, so I wanted to run the logic
board out in the open, for reasons of both safety and convenience.
Special thanks to 68kmla forum member davewongillies for posting
his similar setup with a Classic II logic board, complete with
Amazon links for a bunch of the parts. That Mini-Fit Jr. pin
extractor tool on Amazon is absolute garbage though — I could
never get it to work. I ended up using staples instead.

I got impatient while waiting for my RGBtoHDMI to arrive for
converting the Classic II’s video signal into HDMI, and eventually
discovered another solution created by GitHub user guruthree
involving a Raspberry Pi Pico that converts the signal to VGA. I
made a few cables, tweaked the code until the timings and colors

https://en.wikipedia.org/wiki/Cathode-ray_tube
https://68kmla.org/bb/index.php?threads/running-a-macse-30-without-an-analog-board.38857/#post-522389
https://68kmla.org/bb/index.php?threads/running-a-macse-30-without-an-analog-board.38857/#post-522389
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/poweradapter.jpg
https://github.com/guruthree/mac-se-video-converter/

were correct, and ended up with this concoction to adapt between a
CGA DE-9 video connector and VGA:

Although I would never do anything like this in a real production
environment where reliability matters, I didn’t even use level
shifters for the 5V signals coming from the Mac. Technically, the
RP2040 is “sort of” 5V tolerant, even though it’s not documented in
the datasheet. That, combined with the fact that I had a few Picos
laying around that I didn’t care about destroying, gave me enough
confidence to try it out.

Here’s the whole mess, all wired up together, along with an ATX
power supply. I also swapped the original ROM chips out with some
programmable SST29EE010 EEPROMs I had on hand.
Interestingly, the factory chips from Apple were actually UV-
erasable EPROMs, so I could have even used the original chips if I
had a UV chip eraser.

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/videoadapter.jpg
https://hackaday.com/2023/04/05/rp2040-and-5v-logic-best-friends-this-fx9000p-confirms/
https://hackaday.com/2023/04/05/rp2040-and-5v-logic-best-friends-this-fx9000p-confirms/

I successfully booted from a SCSI drive using this setup, and could
capture the video signal with one of my many video capture
devices:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/entiresetup.jpg
https://www.downtowndougbrown.com/wp-content/uploads/2025/01/welcome.png

By the way, I think there’s something wrong with at least one
column of pixels on the left side. I think it has something to do with
the tweak I made to the code running on the RP2040 in order to
make it sync up correctly with the Classic II’s video signal. I’m sure
I could fix it if I played around more. The RGBtoHDMI, which
arrived a few days later, does not have this problem.

Anyway, I knew I was in business. I threw together some 68030
assembly code to display the value of A1 on the screen, found an
unused place in the ROM to put it, and then came up with three
custom ROMs to try on the Classic II:

Custom ROM 1: Replace the instruction at 0x40A43B9C
that results in a Sad Mac (the MOVE.B instruction) with a
jump to my special code that draws A1 to the screen, so we
can see what A1 is on hardware at that point. Also, this would
verify whether this code even runs at all on hardware.
Custom ROM 2: Replace the instruction at 0x40A43B94 (the
CAS instruction) with the same jump to my special code. This
would verify whether the out-of-bounds jump was really
happening, and what the value of A1 was leading up to it.
Custom ROM 3: Replace the instruction at 0x40A43B94 (the
CAS instruction) with NOPs. This would ideally replicate
exactly what I was seeing in MAME, proving that the bad
CAS instruction was vital to the Classic II’s ability to boot.

Let’s look at the results one by one. Here’s the result that was
displayed when I ran Custom ROM 1:

This verified that the section of code I was looking at definitely ran
on hardware. It also showed that A1 was set to a very interesting
value when it reached the instruction that crashed on MAME.
0x40A4BBB2 is not really an address you would write to because
it’s a ROM address, but it doesn’t cause a bus error if you attempt it.

Here is what I got when I ran Custom ROM 2:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-21.png

The same A1 value that we saw in MAME! This proved two things.
One, the out-of-bounds table jump was definitely happening — if it
wasn’t, my custom A1 drawing code wouldn’t have ran at all, since
the JMP to it was stored out of sync of the normal intended code
flow just like the accidental CAS instruction. Second, it also proved,
along with the first test, that the CAS instruction was indeed fixing
A1 on hardware, just like I theorized.

Lastly, my test run of Custom ROM 3, which eliminated the CAS
instruction from the situation altogether, gave me the final proof I
needed:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-22.png

A Sad Mac, just like I saw with MAME in 32-bit mode. I also
discovered during this test that on hardware, the same Sad Mac
happens in 24-bit mode too. So MAME is actually more tolerant
than hardware of that invalid write in 24-bit mode.

These results motivated me to make a couple more hacked ROM
images to run on hardware in order to glean the values of all of the
CPU’s data and address registers immediately before and after the
CAS instruction. The data register values are shown in the left
column, address registers in the right column. Before:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-23.png

And after:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-41.png

Yep! Everything is the same except for A1, which has magically
been transformed from FFFF8FBA to 40A4BBB2. The mystery
instruction is definitely what was responsible for that.

One fun part about this test was being able to successfully verify
that everything on hardware was exactly identical to what MAME
did up to the bad instruction. The entire register state shown in the
“before” picture is a perfect match to what MAME shows when
booting in 32-bit mode prior to the bad CAS instruction. See for
yourself:

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-42.png

If your brain is fried after reading all this, first of all I don’t blame
you at all, and second, let me bring everything together to explain
what this all means:

I’ve discovered an undocumented MC68030 instruction that
performs a read-modify-write bus cycle and also changes the
value of the A1 register.

This newly-discovered instruction turns out to be the glue that’s
accidentally holding the Classic II together. Without this instruction
modifying A1, the Classic II can’t boot. I’m confident that it was a
mistake and not something intentional. A totally understandable
mistake, at that. If the pesky 68030 hadn’t been hiding the bug from
Apple’s ROM developers, there is no doubt they would have caught
it before the Classic II shipped.

I searched deeper and found the same chunk of code in the newer
Macintosh IIvx ROM, and in that ROM they finally increased the
size of the jump table. I confirmed that the case for the Classic II in
that code does nothing at all. It just jumps directly to an RTS
instruction. I wonder if the Apple ROM developer working on that
chunk of code in the IIvx ROM scratched their head in confusion

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-43.png

when they added new entries for a bunch of new models, including
the Classic II, after the Classic II ROM had already been finalized
and shipped. Who knows? I’m not sure how Apple handled all the
different ROM variants back then.

Because of this new discovery, I think it’s very likely that there is
not a 100% perfect Motorola MC68030 emulator or replica in
existence right now. This might be the only case in existence where
it matters though. What this means is I could write a small chunk of
code that determines whether it’s running on a physical 68030 or an
emulator, by simply using that instruction and looking at the
resulting value of A1.

What can MAME do in order to work around this problem and
allow the Classic II to boot? We don’t really know the exact details
of what this instruction does. With some limited testing, I believe
I’ve observed that the resulting value of A1 depends on the original
A1 value, the value of A7, and the program counter. But I’m not
sure. Maybe someone can make a program that tries out a bunch of
different register values and memory contents, and attempt to
deduce what exactly the instruction does so that it can be emulated
accurately. Until someone decides that it’s worth trying to figure
out, MAME is patching this bug out of the ROM in order to allow
the Classic II to boot. As Arbee pointed out, we’re a little late to get
Motorola/Freescale/NXP to issue an errata. Unless someone who
worked on the 68030 happens to see this post and might have a clue
about what’s going on here…

Here’s a screenshot of MAME with Arbee’s patch applied, now able
to successfully emulate a Classic II with 32-bit addressing enabled.
Yay!

https://github.com/mamedev/mame/commit/56af26b77aa5d564cefad4ae2f435ee155b1409d#diff-2ed507da8835078a892501397a58bcd18e52779493b97e3c2d550c52dedce3e2
https://68kmla.org/bb/index.php?threads/classic-ii-possible-rom-bug-weird-68030-instruction.49071/page-2#post-551578

After all that, what’s the lesson we can learn from this story? I guess
it’s that emulators can teach us new things about hardware that we
never would have thought to look into! I bet this bug in the ROM
would have gone undiscovered for all eternity if not for MAME
providing emulation of the Classic II, which isn’t a particularly
notable machine compared to more popular compact Macs like the
SE/30 and Color Classic.

It also goes to show you how bugs can be lurking in the background
in places where you might think everything is totally polished. I
think it’s also a good example of how some bugs just aren’t that big

https://www.downtowndougbrown.com/wp-content/uploads/2025/01/image-44.png

of a deal. This bug fits that category pretty well. The machine
worked fine and nobody noticed.

Oh, and as for the original reason I somehow managed to pull
myself into this investigation in the first place: the command+power
key combination does not work in MAME. Now that I have a real
Classic II, I have been able to confirm that the keystroke does
indeed work on hardware. It only works with MacsBug installed,
which is likely due to what I said earlier about the Egret disabling it
by default. Either way, it really should work in MAME when
MacsBug is installed. I suppose that’s another MAME fix for me to
work on!
Address: https://www.downtowndougbrown.com/2025/01/the-
invalid-68030-instruction-that-accidentally-allowed-the-mac-
classic-ii-to-successfully-boot-up/
« Easy repair of a defective NZXT Signal 4K30 capture card
The gooey rubber that’s slowly ruining old hard drives »
Trackback

29 comments

1. Dan Allen @ 2025-01-25 13:58

Thanks for an interesting writeup. I followed it all with
interest as I was in the developer of MacsBug at Apple from
1985 until 1988.

I mainly worked on the first 3 generations of Macintosh, like
the Mac II, Mac SE, Mac Plus, etc.

I miss using MacsBug!

https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/easy-repair-of-a-defective-nzxt-signal-4k30-capture-card/
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/trackback/

Dan Allen
ex Apple (1985-1994)

2. Doug Brown @ 2025-01-25 14:18

Wow, thanks for your comment, Dan! I’m honored that you
were able to read my writeup. I am too young to have used
MacsBug for development during the time when it was
heavily used, but I’ve gotten a lot of great use out of it
recently while experimenting with these Macs from the era.
Thank you for all the work you did on MacsBug! It truly is an
excellent piece of software.

3. Dan Allen @ 2025-01-25 16:55

Thank you Doug for your kind words.

Dan

4. tim lindner @ 2025-01-25 20:36

I had something like this recently happen the Mame’s Color
Computer driver. A game loader was using an undocumented
instruction intentionally.
Fortunately we have someone in our community to really dig
into undocumented 6809 instructions.
https://github.com/hoglet67/6809Decoder/wiki/Undocumented-
6809-Behaviours

5. Christian Zietz @ 2025-01-26 00:06

http://www.downtowndougbrown.com/
http://tlindner.macmess.org/
https://github.com/hoglet67/6809Decoder/wiki/Undocumented-6809-Behaviours
https://github.com/hoglet67/6809Decoder/wiki/Undocumented-6809-Behaviours

Really nice debugging and write-up!

I encountered similar weird behavior while debugging
differences between a real Atari TT and an emulator. (The
Atari TT has a 68030 CPU, too.) What I learned from that:
Setting reserved bits in the extension word of the instruction
does NOT cause an illegal instruction exception. It is even
documented that it won’t. Instead, all sorts of
undocumented/undefined behavior can be triggered with
“illegal” extension words.

6. Bob Felts @ 2025-01-26 10:26

I miss the 68K, Macsbug, MacNosy, and MPW.

Are you sure the CAS isn’t triggering an illegal instruction
exception and the handler isn’t doing something screwy with
A1?

CAS was a wonderful instruction, but atomicity was lost
when the address was that of a NuBus peripheral.

7. Doug Brown @ 2025-01-26 11:02

Very cool link Tim! I wonder if this will lead to a similar
analysis of the 68000 series.

Thanks, Christian! Yeah, that seems to be the case — if the
first word is valid, it won’t be treated as an illegal instruction.

http://www.downtowndougbrown.com/

Funny that you mention the Atari TT. I recently bought a hard
drive that ended up being from somebody’s TT or Falcon (not
sure which). Sadly I couldn’t boot the image in an emulator
because it crashes during boot.

Bob, yes I am absolutely positive that it’s not being treated as
an illegal instruction. If I change it to a real illegal instruction
like 0xFFFF and step into it, MacsBug notices and says
“Unimplemented Instruction at xxxxxxxx”. That doesn’t
happen with this instruction. It would be interesting for some
of the Amiga and Atari folks to see if they can reproduce my
results on an 030 too.

8. Christian Zietz @ 2025-01-26 11:07

I tried the instruction sequence from the article (“0x0CEC
0x08A9 0x0004”) in an Atari upgraded with a 68020. It does
similar weird things as you observed on the 68030, writing to
(A4+4) and altering A1 in the process. Like you, I couldn’t
deduce the actual “formula” for A1.

(My Atari TT and Falcon are in storage right now, which is
why I couldn’t test it on a 68030. But it’ll most likely be the
same.)

9. Doug Brown @ 2025-01-26 11:13

Thanks Christian! That’s great to see you reproduce it on a
machine other than a Mac. Also interesting that it happens on
the 68020 as well.

http://www.downtowndougbrown.com/

An interesting comment on the English Amiga Board by Toni
Wilen points out that one of the bits that is 1 (probably bit 3?)
may be choosing whether the D1 is really an A1, but it returns
weird results. I’m guessing by changing bits 0-2 it will change
which address register it messes with.

10. Doug Brown @ 2025-01-26 11:40

Yeah, confirmed. If I change the low byte of the second word
so that it’s 0xA8 through 0xAF, it changes A0 through A7
respectively. If I use 0xA0 through 0xA7 instead (turning off
bit 3), it changes D0 through D7 respectively (and seems to
act more like a real CAS instruction, but I didn’t test
extensively).

11. Doug Brown @ 2025-01-26 19:20

A couple more things to mention:

MAME’s debugger now has a fix for how it showed a wrong
register in CAS instructions (even valid ones). Just to be clear,
this is a minor unrelated thing I touched on in the post, not a
fix for the execution of the undocumented instruction.

I realized that there was a confusing point toward the end of
the article. Without the CAS instruction fixing the address, a
real Classic II crashes regardless of whether you’re in 24-bit
or 32-bit mode. The fact that it didn’t crash in 24-bit mode
during my initial testing in the emulator is a MAME-specific
thing. MAME doesn’t signal a bus error on the bad access in
24-bit mode, even though hardware does. I shouldn’t have

https://eab.abime.net/showthread.php?t=119691
https://eab.abime.net/showthread.php?t=119691
http://www.downtowndougbrown.com/
http://www.downtowndougbrown.com/
https://github.com/mamedev/mame/commit/748bef667b24ed9ef975205708ba5058776a513b
https://github.com/mamedev/mame/commit/748bef667b24ed9ef975205708ba5058776a513b

made the comment about how Apple’s developers obviously
didn’t develop only in 24-bit mode, because it was completely
irrelevant. It would have crashed either way if the 68030’s
CAS instruction wasn’t fixing A1. I removed that sentence
from the article, hopefully it’s less confusing now.

12. Jim Murphy @ 2025-01-26 20:16

Doug,

This was some very good detective work, and could have
been a great KON & BAL’s Puzzle Page back in the old
Develop magazine.

I was the lead maintainer of MacsBug from 1993 until it was
retired in the early 2000s.

Jim
still @Apple

13. The invalid 68030 instruction that accidentally allowed the
Mac Classic II to successfully boot up – OSnews @ 2025-01-
28 06:23

[…] ↫ Doug Brown […]

14. Zafer Akçalı @ 2025-01-28 10:02

If somebody knows the instruction is, Jim Drew from utilites
unlimited. if you can reach him now, you can ask.

https://en.m.wikipedia.org/wiki/MacsBug
https://www.osnews.com/story/141616/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.osnews.com/story/141616/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/

15. Zafer Akçalı @ 2025-01-28 10:14

Jim Drew may be the admin in that forum, and you can ask
him questions:
https://www.cbmstuff.com/forum/forumdisplay.php?fid=49

16. James Burgess @ 2025-01-28 11:34

This is fascinating! I had built hardware and worked on
compilers for m68k at college before ever seeing a Macintosh
in 1993. My first reaction was, wait a minute, my code can
crash this machine, what the heck…!? A year in I was loving
MacsBug on my IIfx. Dan Allen thank you for such a
delightful tool! I really miss programming that way, was
mostly using ThinkC (instant incremental linking!) with the
occasional chunks of assembler so debugging with MacsBug.
Not much improvement since then in developer tools.
Intellisense is about all I can think of.

17. SkYhAwK @ 2025-01-29 00:45

Interesting would be to know how the misconstructed CAS
instruction ended up like that in ROM. C compilers don’t emit
CAS instructions, so it could be only a buggy assembler,
manual hex entry by the coder, or simply random/trashed byte
sequence that happens to resemble a misconstructed CAS
instruction.

https://www.cbmstuff.com/forum/forumdisplay.php?fid=49

18. Doug Brown @ 2025-01-29 07:09

Thank you all for your comments!

SkYhAwK, I covered that in the article. The assembler didn’t
assemble a CAS instruction. What happened is a bug in the
ROM is jumping into the middle of an intended instruction,
which just so happens to start with the same pattern that a
CAS instruction would start with.

19. Peter Jerde @ 2025-01-29 09:32

What a great story, and a wonderful writeup! Thank you!

I wonder when it will be possible to emulate the *hardware*
of a processor like the 68030 at the gate level. I know the
6502 has been done — I think you can actually watch an
animation of one operating in “real time” somewhere on the
web.

Being able to emulate the VLSI chips from machines of that
era will be great, too, assuming there will ever be a way to
reconstruct them virtually. I wish more companies would
consider publishing the technical documents from their vaults
for stuff from more than twenty years ago, before such details
truly get lost to the sands of time. Though it’s amazing what
work has been done decapping and photographing the silicon
to reverse engineer these things. I recently ran across a 74 MB
jpeg image of the SWIM disk controller chip’s gates, for
example. Amazing.

http://www.downtowndougbrown.com/

20. Doug Brown @ 2025-01-29 11:59

Jim, I’m sorry that it took so long for your comment to show
up. It ended up being incorrectly marked as spam by Akismet.
Thank you for your comment, and I’m glad you were able to
read my writeup! Thank you for all your hard work on
MacsBug as well!

Thanks Peter! I agree with what you’re saying. I think I saw
the 6502 gate level emulation you are talking about. I too
would love to see some of the old technical details published
publicly so that we can preserve everything.

21. David Shayer @ 2025-01-29 14:52

That’s an awesome tale! What a fun bug to track down. Jim
Murphy is right, that could have been in Kon & Bal’s Puzzle
Page in the old Apple Develop magazine.

I loved working on the classic Mac. The system was small
enough that an engineer could understand most of it, and
disassemble it all with tools like Macsbug. Modern OSes are
so large and complex that there’s no way for even a very
skilled engineer to understand more than a small part in depth.

I taught classes on debugging with Macsbug in Apple
engineering, and I co-wrote the Macsbug Reference and
Debugging Guide.

http://www.downtowndougbrown.com/

https://www.amazon.com/Macsbug-Reference-Debugging-
Guide-Technical/dp/0201567679

If you’re doing this kind of work, you must read How to
Write Macintosh Software by Scott Knaster. It’s all about how
the internals of classic Mac OS really works.

22. Doug Brown @ 2025-01-29 19:52

Hi David,

Thanks! You’re absolutely right, it was a lot of fun. And an
excuse to buy another Classic Mac 🙂 I know what you mean
about how everything was small enough to understand so
much about it back then. Plus, I am a big fan of the 68000-
series assembly. I find it so much easier to read than some of
the other architectures, although ARM is pretty nice too.

That is really cool that you were one of the authors of Apple’s
MacsBug book! It sounds just like what I need to look at. It
has been really fun hearing from several Apple folks from the
time who were heavily involved with MacsBug. I’m so glad
you all have been commenting! I think it would be cool if one
of the ROM developers ends up seeing this. I wonder if any of
them knew that this sneaky little “bug” existed. I put it in
quotes since it didn’t actually cause any problems.

Thank you for the book recommendation. I’ll check it out!
Sounds like everyone should check out some of the old
Develop magazines too, since both you and Jim mentioned it!

23. Mark Lentczner @ 2025-01-31 11:25

https://www.amazon.com/Macsbug-Reference-Debugging-Guide-Technical/dp/0201567679
https://www.amazon.com/Macsbug-Reference-Debugging-Guide-Technical/dp/0201567679
http://www.downtowndougbrown.com/

Fantastic work!

What memories… I was on the Mac team from 85 though 89,
and this machine was after me. But I spent tons of time in
macsbug and coding 680×0 by hand. I was the co-developer
of the Apple Sound Chip, so it was extra fun to see the tie-in,
here.

24. Doug Brown @ 2025-01-31 21:12

Thanks Mark! Wow, that’s really cool! I spent a lot of time a
while ago learning how to interact directly with the ASC in
order to customize my IIci by giving it a special sampled
startup sound instead of the original one played with the wave
table synthesizer. It was a neat little chip.

25. The Mac Classic II Shouldn't Have Worked — 512 Pixels @
2025-02-07 07:30

[…] The Mac Classic II Shouldn’t Have Worked → […]

26. Ed Rupp @ 2025-02-07 17:59

Nice sleuthing… I agree that bit3 is what is modifying D1 to
A1 and suspect that bit9 would also affect Du. Illegal opcode
decoding is probably not smart enough to look at bits beyond
the first 2 (or MAYBE 4) bytes. I worked at Motorola Austin
from 78-89 and wrote the microcode assembler for the 68020.
Up to that point, the microcode was done on 3×5 cards…

http://www.downtowndougbrown.com/
https://www.downtowndougbrown.com/2011/08/mac-iici-custom-startup-chime-part-ii/
https://www.downtowndougbrown.com/2011/08/mac-iici-custom-startup-chime-part-ii/
https://512pixels.net/2025/02/the-mac-classic-ii-shouldnt-have-worked/

Unrelated, but maybe interesting: At some point I was asked
(maybe by an Apple programmer?) what instruction caused
the most potential page faults. I think the answer was CAS2
because it could touch two unrelated memory addresses and
the instruction could straddle 2 pages. So 6 potential page
faults for this instruction.

27. Doug Brown @ 2025-02-07 19:33

Thanks, Ed! That makes sense about bit 9. Very cool that you
wrote the microcode assembler for the 68020. It sounds like
the 68020 has very similar behavior to what I observed on the
030 based on comments from others. Wow…3×5 cards for the
microcode…can only imagine what that would have been
like!

6 page faults in a single instruction, that would be a lot!

28. Alex Rosenberg @ 2025-02-11 10:03

Ed, we asked that question about page faults at one of the
Apple WWDC Stump the Experts nights. IIRC the answer at
that time was a MOVE16 from the ‘040 and it was a lot more
than six faults.

29. Ed Rupp @ 2025-02-11 13:30

Nick Tredennick wrote the 68000 microcode and used 3×5
cards. The 68010 was a close derivative and I think still used

http://www.downtowndougbrown.com/

the cards. Doug MacGregor wrote the 68020 microcode.
Design verification was done by building the whole processor
with 74xx TTL on giant wire-wrap boards.

The 6 faults was for the ‘030. I never investigated the
maximum for the ‘040, but MOVE16 sounds right. The last
thing I did on the ‘040 was to clean up the floating point
emulation layer. I think the code eventually got released to the
Linux kernel but that was after I left. At the time, the ‘040
held the record for most mask layer revisions before
production, I think…

Add your comment now

 Name (required)

 Email (Will NOT be published)
(required)

 URL

Submit

Subscribe

https://twitter.com/dt_db
https://twitter.com/dt_db
https://www.youtube.com/user/doogulass
https://www.youtube.com/user/doogulass
https://github.com/dougg3
https://github.com/dougg3
https://www.linkedin.com/in/doug-brown-60100519
https://www.linkedin.com/in/doug-brown-60100519

Recent Posts

The gooey rubber that’s slowly ruining old hard drives
The invalid 68030 instruction that accidentally allowed
the Mac Classic II to successfully boot up
Easy repair of a defective NZXT Signal 4K30 capture
card
How webcams with focus control work (Razer Kiyo
Pro repair)
The capacitor that Apple soldered incorrectly at the
factory
Hardware repair of an Elgato HD60 S that only worked
on Mac
Are wireless gamepads terrible? Mario Maker TAS
playback with an RP2040
Fixing an Elgato HD60 S HDMI capture device with
the help of Ghidra

Categories

Chumby 8 kernel (13)
Classic Mac (11)
Computer repair (10)
Electronics repair (8)
iOS (3)
Linux (43)
Mac ROM hacking (11)
Microcontroller lessons (11)
Microcontrollers (4)
Product reviews (5)
Python (1)
Qt (5)

https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/the-invalid-68030-instruction-that-accidentally-allowed-the-mac-classic-ii-to-successfully-boot-up/
https://www.downtowndougbrown.com/2025/01/easy-repair-of-a-defective-nzxt-signal-4k30-capture-card/
https://www.downtowndougbrown.com/2025/01/easy-repair-of-a-defective-nzxt-signal-4k30-capture-card/
https://www.downtowndougbrown.com/2024/12/how-webcams-with-focus-control-work-razer-kiyo-pro-repair/
https://www.downtowndougbrown.com/2024/12/how-webcams-with-focus-control-work-razer-kiyo-pro-repair/
https://www.downtowndougbrown.com/2024/11/the-capacitor-that-apple-soldered-incorrectly-at-the-factory/
https://www.downtowndougbrown.com/2024/11/the-capacitor-that-apple-soldered-incorrectly-at-the-factory/
https://www.downtowndougbrown.com/2024/10/hardware-repair-of-an-elgato-hd60-s-that-only-worked-on-mac/
https://www.downtowndougbrown.com/2024/10/hardware-repair-of-an-elgato-hd60-s-that-only-worked-on-mac/
https://www.downtowndougbrown.com/2024/10/are-wireless-gamepads-terrible-mario-maker-tas-playback-with-an-rp2040/
https://www.downtowndougbrown.com/2024/10/are-wireless-gamepads-terrible-mario-maker-tas-playback-with-an-rp2040/
https://www.downtowndougbrown.com/2024/09/fixing-an-elgato-hd60-s-hdmi-capture-device-with-the-help-of-ghidra/
https://www.downtowndougbrown.com/2024/09/fixing-an-elgato-hd60-s-hdmi-capture-device-with-the-help-of-ghidra/
https://www.downtowndougbrown.com/category/chumby-8-kernel/
https://www.downtowndougbrown.com/category/classic-mac/
https://www.downtowndougbrown.com/category/computer-repair/
https://www.downtowndougbrown.com/category/electronics-repair/
https://www.downtowndougbrown.com/category/ios/
https://www.downtowndougbrown.com/category/linux/
https://www.downtowndougbrown.com/category/mac-rom-hacking/
https://www.downtowndougbrown.com/category/microcontroller-programming/
https://www.downtowndougbrown.com/category/microcontrollers/
https://www.downtowndougbrown.com/category/product-reviews/
https://www.downtowndougbrown.com/category/python/
https://www.downtowndougbrown.com/category/qt/

Reverse engineering (3)
Uncategorized (20)
Windows (7)

Archives

March 2025 (1)
January 2025 (2)
December 2024 (1)
November 2024 (1)
October 2024 (2)
September 2024 (1)
August 2024 (1)
July 2024 (3)
June 2024 (4)
May 2024 (1)
April 2024 (2)
December 2023 (1)
November 2023 (2)
September 2023 (3)
August 2023 (3)
June 2023 (1)
May 2023 (1)
April 2023 (1)
March 2023 (2)
January 2023 (1)
December 2022 (3)
August 2022 (1)
May 2022 (2)
March 2022 (1)
December 2021 (1)
June 2021 (1)

https://www.downtowndougbrown.com/category/reverse-engineering/
https://www.downtowndougbrown.com/category/uncategorized/
https://www.downtowndougbrown.com/category/windows/
https://www.downtowndougbrown.com/2025/03/
https://www.downtowndougbrown.com/2025/01/
https://www.downtowndougbrown.com/2024/12/
https://www.downtowndougbrown.com/2024/11/
https://www.downtowndougbrown.com/2024/10/
https://www.downtowndougbrown.com/2024/09/
https://www.downtowndougbrown.com/2024/08/
https://www.downtowndougbrown.com/2024/07/
https://www.downtowndougbrown.com/2024/06/
https://www.downtowndougbrown.com/2024/05/
https://www.downtowndougbrown.com/2024/04/
https://www.downtowndougbrown.com/2023/12/
https://www.downtowndougbrown.com/2023/11/
https://www.downtowndougbrown.com/2023/09/
https://www.downtowndougbrown.com/2023/08/
https://www.downtowndougbrown.com/2023/06/
https://www.downtowndougbrown.com/2023/05/
https://www.downtowndougbrown.com/2023/04/
https://www.downtowndougbrown.com/2023/03/
https://www.downtowndougbrown.com/2023/01/
https://www.downtowndougbrown.com/2022/12/
https://www.downtowndougbrown.com/2022/08/
https://www.downtowndougbrown.com/2022/05/
https://www.downtowndougbrown.com/2022/03/
https://www.downtowndougbrown.com/2021/12/
https://www.downtowndougbrown.com/2021/06/

April 2021 (1)
January 2021 (1)
September 2020 (1)
August 2020 (1)
July 2020 (1)
May 2020 (1)
June 2019 (1)
April 2019 (1)
December 2018 (1)
August 2018 (1)
May 2018 (1)
April 2018 (3)
February 2018 (1)
October 2017 (1)
July 2017 (1)
May 2017 (3)
March 2017 (1)
October 2016 (1)
June 2015 (1)
March 2015 (1)
November 2014 (1)
August 2014 (3)
July 2014 (1)
April 2014 (1)
March 2014 (1)
February 2014 (1)
November 2013 (1)
August 2013 (1)
June 2013 (3)
April 2013 (1)
March 2013 (1)
January 2013 (2)
December 2012 (2)

https://www.downtowndougbrown.com/2021/04/
https://www.downtowndougbrown.com/2021/01/
https://www.downtowndougbrown.com/2020/09/
https://www.downtowndougbrown.com/2020/08/
https://www.downtowndougbrown.com/2020/07/
https://www.downtowndougbrown.com/2020/05/
https://www.downtowndougbrown.com/2019/06/
https://www.downtowndougbrown.com/2019/04/
https://www.downtowndougbrown.com/2018/12/
https://www.downtowndougbrown.com/2018/08/
https://www.downtowndougbrown.com/2018/05/
https://www.downtowndougbrown.com/2018/04/
https://www.downtowndougbrown.com/2018/02/
https://www.downtowndougbrown.com/2017/10/
https://www.downtowndougbrown.com/2017/07/
https://www.downtowndougbrown.com/2017/05/
https://www.downtowndougbrown.com/2017/03/
https://www.downtowndougbrown.com/2016/10/
https://www.downtowndougbrown.com/2015/06/
https://www.downtowndougbrown.com/2015/03/
https://www.downtowndougbrown.com/2014/11/
https://www.downtowndougbrown.com/2014/08/
https://www.downtowndougbrown.com/2014/07/
https://www.downtowndougbrown.com/2014/04/
https://www.downtowndougbrown.com/2014/03/
https://www.downtowndougbrown.com/2014/02/
https://www.downtowndougbrown.com/2013/11/
https://www.downtowndougbrown.com/2013/08/
https://www.downtowndougbrown.com/2013/06/
https://www.downtowndougbrown.com/2013/04/
https://www.downtowndougbrown.com/2013/03/
https://www.downtowndougbrown.com/2013/01/
https://www.downtowndougbrown.com/2012/12/

August 2012 (1)
July 2012 (2)
June 2012 (1)
May 2012 (1)
February 2012 (3)
January 2012 (1)
November 2011 (1)
October 2011 (2)
August 2011 (3)
May 2011 (1)
April 2011 (1)
March 2011 (2)
November 2010 (2)
October 2010 (3)
July 2010 (5)

Recent Comments

Doug Brown on The gooey rubber that’s slowly ruining
old hard drives
Steve on The gooey rubber that’s slowly ruining old
hard drives
Chris on The gooey rubber that’s slowly ruining old
hard drives
Ed Rupp on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up
Alex Rosenberg on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up
Doug Brown on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully

https://www.downtowndougbrown.com/2012/08/
https://www.downtowndougbrown.com/2012/07/
https://www.downtowndougbrown.com/2012/06/
https://www.downtowndougbrown.com/2012/05/
https://www.downtowndougbrown.com/2012/02/
https://www.downtowndougbrown.com/2012/01/
https://www.downtowndougbrown.com/2011/11/
https://www.downtowndougbrown.com/2011/10/
https://www.downtowndougbrown.com/2011/08/
https://www.downtowndougbrown.com/2011/05/
https://www.downtowndougbrown.com/2011/04/
https://www.downtowndougbrown.com/2011/03/
https://www.downtowndougbrown.com/2010/11/
https://www.downtowndougbrown.com/2010/10/
https://www.downtowndougbrown.com/2010/07/
http://www.downtowndougbrown.com/
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544146
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544146
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544143
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544143
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544140
https://www.downtowndougbrown.com/2025/03/the-gooey-rubber-thats-slowly-ruining-old-hard-drives/#comment-544140
http://www.downtowndougbrown.com/

boot up
Ed Rupp on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up
The Mac Classic II Shouldn't Have Worked — 512
Pixels on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up
Doug Brown on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up
Mark Lentczner on The invalid 68030 instruction that
accidentally allowed the Mac Classic II to successfully
boot up

Spam Blocked

251,018 spam
blocked by Akismet

Downtown Doug Brown · coogee theme · 2008 · Privacy Policy
RSS Feed · WordPress · TOP

https://512pixels.net/2025/02/the-mac-classic-ii-shouldnt-have-worked/
https://512pixels.net/2025/02/the-mac-classic-ii-shouldnt-have-worked/
http://www.downtowndougbrown.com/
https://akismet.com/
https://www.downtowndougbrown.com/
http://imotta.cn/
https://www.downtowndougbrown.com/privacy-policy/
https://www.downtowndougbrown.com/feed/
http://wordpress.org/

