
Josh Eads

Information Security

Engineer

Tavis Ormandy

Software Engineer

Matteo Rizzo

Information Security

Engineer

Kristoffer Janke

Information Security

Engineer

Eduardo Vela Nava

Zen and the Art of Microcode

Hacking

Fig. 1. The EntrySign vulnerability logo (CCO)

Today we are releasing the full details of EntrySign, the AMD Zen

microcode signature validation vulnerability which we initially

disclosed last month.

In this post, we first discuss the background of what microcode is,

why microcode patches exist, why the integrity of microcode is

important for security, and how AMD attempts to prevent tampering

with microcode. Next, we focus on the microcode patch signature

validation process and explain in detail the vulnerability present (using

CMAC as a hash function). Finally, we discuss how to use some of the

tools we've released today which can help researchers reproduce and

expand on our work (skip to the Zentool section of this blogpost for a

“how to” on writing your own microcode).

In a future post, we will walk through the methods and techniques

used to discover this vulnerability along with further details on the

microcode patch and instruction format.

BLOG <!--enterBlog >1 ---

Google Bug Hunters

https://creativecommons.org/publicdomain/zero/1.0/?ref=chooser-v1
https://github.com/google/security-research/security/advisories/GHSA-4xq7-4mgh-gp6w
https://bughunters.google.com/blog/5424842357473280/test-blog#zentool-putting-all-the-pieces-together
https://bughunters.google.com/
https://bughunters.google.com/

Information Security

Engineer

Published: Mar 5,

2025

Vulnerability

Research

RSS Feed 

Microcode Background

Modern x86 CPUs consist of many complex instruction set computer

(CISC) cores, each of which internally uses a reduced instruction set

computer (RISC), termed the microcode engine, to implement some

of the more complicated instructions and architectural transitions.

Both Intel and AMD designed unique RISC-based microcode

instruction sets, both of which are undocumented, but conceptually

similar to other RISC instruction sets like ARM or RISC-V. Similar to

software, implementing complex hardware correctly is challenging;

historically, this has led to multiple well-known bugs, such as the Intel

FDIV bug on Pentium in the year 1994. Unlike software, when a bug is

discovered in hardware oftentimes the only way to remediate the

issue is to fabricate a new, fixed version of the hardware – an

extremely costly process. To avoid this massive cost, x86 CPU

manufacturers created a mechanism enabling them to update the

CPU’s microcode at runtime in order to patch known bugs (available

from AMD K8 in 2003, and Intel P6 in 1995).

The diagram below depicts a simplified view of the AMD Zen CPU

architecture with an emphasis on the sections involving microcode.

Similar to other CPU architectures, at a high level the core is split into a

frontend which fetches and decodes instructions, and a backend

which executes and retires instructions. Once the current instruction

pointer address is determined, the CPU checks to see if the micro-ops

implementing the instruction are present in the micro-op cache; if so,

then those micro-ops are pushed into the queue to be dispatched to

the backend. Otherwise, the instruction cache is queried which

eventually (depending on data locality) will return back the bytes at

the instruction pointer which encompass the x86 macro instruction.

From here, the decoder determines whether the instruction is a

“fastpath” or microcoded instruction. Fastpath instructions are

implemented using a hard-coded set of micro-ops, while microcoded

instructions require the microcode engine to emit a variable length set

of micro-ops. Note the patch RAM adjacent to the microcode ROM –

Google Bug Hunters

https://bughunters.google.com/feed/en
https://bughunters.google.com/feed/en
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#microcode-background
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#microcode-background
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://lux.dmcs.pl/ak/2014_paper_microcode.pdf
https://bughunters.google.com/
https://bughunters.google.com/

this is where microcode patches are installed and it will be discussed

later in more detail. Finally, the micro-ops emitted are pushed into the

micro-op queue and sent to the dispatcher (similar to the micro-op

cache hit path from before).

Fig. 2. A simplified view of AMD’s Zen architecture highlighting where

the microcode engine might be

The CPU microcode instructions and data are physically stored in an

on-die ROM with additional on-die patch SRAM. This patch RAM can

be loaded with new instructions during a microcode update (typically

occurring during BIOS and OS boot) and is impossible to directly

access using the x86 core. The only documented method for changing

the microcode patch RAM is by loading an authentic microcode

update from AMD, verified by a cryptographic signature.

AMD Microcode Patch Routine

Microcode patching provides CPU architects with an amazing amount

of flexibility when new hardware bugs are encountered and need to

be fixed. However, Intel and AMD have utilized encryption to prevent

reverse engineering of patches and digital signatures to prevent

Google Bug Hunters

https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#amd-microcode-patch-routine
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#amd-microcode-patch-routine
https://bughunters.google.com/
https://bughunters.google.com/

loading of inauthentic microcode patches – preventing both malicious

and research interests in running custom microcode. The verification

and loading process of AMD microcode patches comprises 4 steps

and is detailed below:

I) Authorship: AMD generates a new microcode patch. The patch is

delivered as a binary blob to BIOS, OS, and other partners; inside this

blob are the following components:

A header describing the patch header format, metadata about
the CPU it is designed for, date, and versioning information.

A 2048-bit RSA PKCS #1 signature.

A 2048-bit RSA public key modulus (0x10001 is used as the
exponent).

A 2048-bit Montgomery inverse of the public key (used to
simplify RSA modular operations).

A bit which indicates whether the remainder of the patch is
encrypted.

An array of match registers and mask values which select which
microcode and instructions to patch.

An array of micro-ops bundled in sets of four “quads”, each
paired with a sequence word indicating where to execute next.

Fig. 3. An example of a microcode patch file

II) Authentication: AMD signs the new microcode patch using their

RSA private key which corresponds to the public key embedded in the

patch. Later, during patch verification, the CPU will hash the RSA

Google Bug Hunters

https://en.wikipedia.org/wiki/PKCS_1
https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
https://bughunters.google.com/
https://bughunters.google.com/

public key and verify it matches the hash of AMD’s public key which

was hardcoded in the CPU during manufacturing. This is intended to

ensure only the original RSA key pair can be used to sign microcode

patches.

III) Delivery: AMD delivers the microcode patch to OEMs, OS

platforms, and other partners for validation and distribution.

IV) Verification & Installation: Once the new patch is received, the

microcode will be loaded either at runtime or during the next reboot.

1. The BIOS or OS will identify the correct microcode patch file
(based on CPU identifiers in the header) and begin the update
routine.

2. The software will write the virtual address of the microcode patch
blob to MSR 0xc0010020, this instructs the CPU microcode to
start executing the microcode update routine.

3. The microcode copies the patch to internal memory and verifies
the patch’s CPU identifiers match the actual hardware’s
identifiers.

4. The microcode checks whether the patch’s version is older than
the currently installed patch version. If so, the patch is rejected –
this prevents rollback attacks.

5. The patch hashes the RSA public key using AES-CMAC and
confirms the hash matches the value which was fused in by AMD
when manufacturing the chip.

6. The patch hashes the patch contents (match registers,
instruction masks, and patch instructions).

7. The RSA PKCS #1 signature is decrypted using the RSA public key
and supplied Montgomery modular inverse. The result is a
padded AES CMAC hash of the patch contents.

8. If the signed hash matches the calculated hash, the patch
contents are copied into internal CPU patch RAM. Otherwise, the
patch is rejected.

9. The CPU microcode patch version (MSR 0x8b) is updated to
reflect the newly installed patch.

Google Bug Hunters

https://bughunters.google.com/
https://bughunters.google.com/

AMD Microcode Patch Signature

Verification Algorithm

AMD Zen CPUs use an almost standard RSASSA-PKCS1-v1_5

algorithm; however, instead of using one of the recommended hash

functions, an alternative that is prone to collisions was selected.

RSA is a classic public-key cryptosystem and RSASSA-PKCS1-v1_5 is a

digital signature scheme constructed from RSA. The way standard

RSA signature schemes work is by selecting a hash algorithm, like

SHA-256, padding it with a constant value (like 0x01FF ... FF00 and a

hash function identifier) and then calculating the signature of the

padded value. The recipient can then use the public key to validate the

signature; essentially encrypting the signature into the padded hash

and comparing this value with the calculated padded hash of the

contents. This means that for someone to "fake" a signature, they

would need to either break RSA or break the hash function (usually

MD5, SHA-1 or SHA-2).

For situations where minimizing data storage is important (like in a

CPU mask ROM or fuses), it is also common practice to store the hash

of a public key instead of the public key itself. The AMD microcode

patch uses a 2048-bit RSA key, but a 128-bit hash can be stored on-

die (on the chip) to more efficiently verify the key is authentic. When

verifying a signature, one can hash the public key and verify that it

matches the expected value before using it. From a security

perspective this is safe and equivalent to matching against the entire

RSA key as long as the hash function is secure.

A hash function is a function that takes an arbitrarily long input and

produces a fixed output. In the example below, you can see that we

have two 6-bit long strings (split in blocks of 3 bits each) that each

generate a different 3 bit output.

Google Bug Hunters

https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#amd-microcode-patch-signature-verification-algorithm
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#amd-microcode-patch-signature-verification-algorithm
https://datatracker.ietf.org/doc/html/rfc3447
https://bughunters.google.com/
https://bughunters.google.com/

Fig. 4. A hash function takes arbitrarily long input and produces fixed-

length output

A secure hash function ensures, among other things, that given an

output it is not feasible for you to reverse the operation and calculate

its input (in crypto terms this is called a preimage). So, for example,

given just the output 101, it should be impossible for you to know that

010111 would hash to 101 short of testing all possible inputs until you

get the output you wish to calculate by chance. While in this toy

example the hash is just 3 bits, so one just has to try a few times (up to

eight in the worst case scenario) to find a preimage, a typical hash

function has an output of at least 128 bits, which under normal

circumstances would be too expensive to obtain by chance.

Colliding Keys

The root cause of the EntrySign vulnerability is that the AMD Zen

microcode signature verification algorithm uses the CMAC function as

a hash function; however, CMAC is a message authentication code

and does not necessarily provide the same security guarantees as a

cryptographic hash function. A simplified summary of the CMAC

algorithm is presented below.

Let's say we want to calculate the 3-bit CMAC of the 6-bit message

000111. First, we have to split the 000111 bit string into blocks (here

our example uses blocks of 3 bits, so 000 and 111):

Google Bug Hunters

https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#colliding-keys
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#colliding-keys
https://bughunters.google.com/
https://bughunters.google.com/

Fig. 5. An example of how the CMAC algorithm works

The way the CMAC algorithm works is simply by using an encryption

algorithm (in this case it was AES), and chaining the output with the

next block using the XOR operation (note the diagram omits a final

step for simplicity, you can read more about how CMAC works here).

This ensures that any modification to the input (for example, by

changing the plaintext from 000111 into 010111), generates an

unpredictable change to the output (from 110 to 101):

Fig. 6. If the input changes, the CMAC algorithm generates an

unpredictable change to the output

The weakness of using CMAC as a hash function is that anyone who

has the encryption key is able to observe the intermediate values of

the encryption and calculate a way to "correct" the difference so that

the final output remains the same, even if the inputs are completely

different. For example, below we calculate that given the prefix 010, if

we change the second block from 111 to 101, it will make the last

operation output the same as it would have been if the input was

000111. Despite the two inputs being completely different, they hash

to the same value (110), and we are able to calculate the

Google Bug Hunters

https://en.wikipedia.org/wiki/One-key_MAC
https://bughunters.google.com/
https://bughunters.google.com/

compensating block by just executing the XOR operation (in essence

we want to make sure that the input to the last encryption operation is

100).

Fig. 7. Manipulating CMAC to receive the desired output value

Secure hash functions are designed in such a way that there is no

secret key, and there is no way to use knowledge of the intermediate

state in order to generate a collision. However, CMAC was not

designed as a hash function, and therefore it is a weak hash function

against an adversary who has the key. Remember that every AMD Zen

CPU has to have the same AES-CMAC key in order to successfully

calculate the hash of the AMD public key and the microcode patch

contents. Therefore, the key only needs to be revealed from a single

CPU in order to compromise all other CPUs using the same key. This

opens up the potential for hardware attacks (e.g., reading the key

from ROM with a scanning electron microscope), side-channel attacks

(e.g., using Correlation Power Analysis to leak the key during

validation), or other software or hardware attacks that can somehow

reveal the key. In summary, it is a safe assumption that such a key will

not remain secret forever.

Forging On

We noticed that the key from an old Zen 1 CPU was the example key of

the NIST SP 800-38B publication (Appendix D.1 2b7e1516 28aed2a6

abf71588 09cf4f3c) and was reused until at least Zen 4 CPUs. Using

this key we could break the two usages of AES-CMAC: the RSA public

Google Bug Hunters

https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#forging-on
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#forging-on
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf
https://bughunters.google.com/
https://bughunters.google.com/

key and the microcode patch contents. We were able to forge new

public keys which generated the same hash as the authentic AMD key.

Additionally, we calculated collisions for signatures, and were able to

generate a microcode patch that shares the same signature as

another message that was legitimately signed.

One downside of the attack is that in order to calculate a collision, we

had to inject a specific "compensating" block, which looks like random

data, and which had to be aligned to 16 bytes. While this usually

wouldn't be a problem, doing so on the microcode could cause

crashes depending on where the compensating block was injected, so

we chose to generate preimages of the public key CMAC instead.

With a forged RSA public key, we were then able to sign arbitrary

microcode patches without having to work around these

compensating blocks.

In order to generate preimages of the public key CMAC, we simply

generated candidate RSA public keys that collided with the expected

CMAC value, and checked to see if they could be factored. After a few

attempts we found a number that had prime factors that were easy to

find (in the RSA algorithm these would be the equivalent of p and q

which can then be used to generate the private key):

N = 0x151d07eae2f8151d07eae2f8151d07eaffb72072d
718ba6b0695e24f3aaa01e24f2cddb0d3224f2cddb0d322
4f2cddb0d3224f2cddb0d3224f2cddb0d3224f2cddb0d32
24f2cddb0d3224f2cddb0d3224f2cddb0d3224f2cddb0d3
224f2cddb0d3224f2cddb0d3224f2cddb0d3224f2cddb0d
3224f2cddb0d3224f2cddb0d3224f2cddb0d3224f2cddb0
d3224f2cddb0d3224f2cddb0d3224f2cddb0d3224f2cddb
0d3224f2cddb0d3224f2cddb0d3224f2cddb0d3224f2cdd
b0d3224f2cddb0d3224f2cddb0d3224f2cddb0d3224f2cd
db0d3224f2cddb0d3224f2cddb0d3224f2cddb0d3224f2c
ddb0d3224f2cddb0d3224f2cddb0d3224f2cddb0d3224f3
* 0x61

0x80000000000000000000000000000000ae4634b83805e

Google Bug Hunters

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Operation
https://bughunters.google.com/
https://bughunters.google.com/

a28d7ecac0053a6ab6c0000000000000000000000000000
000
000
000
000
000
000
000
000
0013

The sixteen byte value ae4634b83805ea28d7ecac0053a6ab6c is

there simply to compensate and generate the collision.

The reason we were able to find a 2048-bit number that we could

factor this easily is that, while an RSA public key is hard to factor, a

random (odd) integer in the same size range is very likely to be the

product of a few small primes with only one large prime. In this case, a

factorization can easily be computed, for example, by dividing the

number by small primes to see if they have a zero residue and then

testing if the leftover is likely to be a prime. While RSA is usually

computed using two large and distinct primes, the mathematics

would hold for a product of multiple primes.

With this we could then just sign arbitrary microcode patches without

having to inject compensating blocks on the microcode as long as the

CPU accepted our public key (which consists of our generated

modulus and the public exponent 65537, which was hardcoded for

efficiency reasons). However, there was still one more thing we

needed to do. Since the implementation uses Montgomery Modular

Multiplication (see this video and this summary for an explanation of

this algorithm) to simplify the signature verification algorithm, we

needed to provide one more value that the signature verification

scheme would check before trusting our public key.

Google Bug Hunters

https://youtu.be/cbGB__V8MNk?si=QCeF4Da9pZ4RIqnC
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://youtu.be/C2686MV9vew?si=rDeNzFp3fLpWUkgA
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d48db3ae69004a6a898ca30c98058fb4c5fbe946
https://bughunters.google.com/
https://bughunters.google.com/

The Montgomery Modular Multiplication algorithm requires us to

select a value R such that math operations modulo R are easy to

compute, that R has to be coprime with our public key modulus (N),

and also bigger than it. AMD chose R to be 2**2048 because modular

operations modulo a power of 2 are easy to compute and the modulus

size is 2048 bits (and since N is a product of two primes, it is

guaranteed to be coprime with a power of two). To use Montgomery

reduction, we need the constant called N' (or N_) that is defined by:

Fig. 8. Definition of the constant N’ (or N_)

Putting it all together:

R = 2**2048
N_inv = gmpy2. invert (N, R)
N_ = (N_inv * (R - 1)) % R
bin((N_ * N) % R) = 0b111...111

The microcode verification routine verifies that it has the correct N_

by checking that the bottom 2048 bits of N * N_ are all ones

(equivalent to -1); if this is not the case, it will return an error. With this

value, multiplications can then be done using Montgomery modular

Google Bug Hunters

https://bughunters.google.com/
https://bughunters.google.com/

multiplication (likely also important in this case due to space

constraints in the microcode ROM).

Vulnerability Mitigation

The fix released by AMD modifies the microcode validation routine to

use a custom secure hash function. This is paired with an AMD Secure

Processor update which ensures the patch validation routine is

updated before the x86 cores can attempt to install a tampered

microcode patch. We plan to provide additional details in the

upcoming months on how we reverse engineered the microcode

update process, which led to us identifying the validation algorithms,

extracting the CMAC key, and discovering some file format details.

Peeking Inside the CPU

Before we move on to writing arbitrary microcode, we should first

quickly discuss how AMD’s microcode is implemented and executed.

There is limited prior work investigating AMD’s microcode instruction

set and implementation details; namely the “The anatomy of a high-

performance microprocessor” book on CPU microarchitecture from

1998 contains content on AMD’s K6 RISC86 architecture, and Koppe,

et. al published “Reverse Engineering x86 Processor Microcode” in

2017 which documents their reverse engineering efforts against the

AMD K8 & K10 CPUs from the mid 2000s. To the best of our

knowledge, the current AMD microcode design stems from the

NexGen x86 CPUs from the mid 90’s. These CPUs utilized an internal

RISC-like architecture coined “RISC86” to implement x86 instructions.

AMD ended up acquiring NexGen in 1996 and launched the AMD K6

CPU using NexGen’s RISC86 technology. While many details have

changed over the years (see this site with a collection of resources

from old NexGen CPUs), the fundamental design of Zen microcode

shares some similarities to the original NexGen design.

Google Bug Hunters

https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#vulnerability-mitigation
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#vulnerability-mitigation
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-3019.html
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#peeking-inside-the-cpu
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#peeking-inside-the-cpu
https://archive.org/details/anatomyofhighper0000shri
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-koppe.pdf
https://www.memotech.franken.de/NexGen/
https://bughunters.google.com/
https://bughunters.google.com/

Fig. 9. Microcode engine design

When the CPU frontend decodes the next x86 instruction, it makes a

decision on whether or not the instruction is microcoded or can take a

“fast path” by directly emitting micro-ops. Many simple instructions

are decoded directly into a small number of micro-ops which are

passed on to the CPU backend (and cached in the micro-op cache so

next time an instruction at that address has to be executed, the

decoding step can be skipped). For more complex instructions and

other system operations, control instead passes to the microcode

engine which in turn can emit a series of micro-ops. Circuitry in the

CPU determines the entry point in the microcode ROM for the current

x86 instruction (e.g., RDRAND => 0x0543) and the microcode engine

begins execution from there. The microcode ROM consists of fixed

length 64-bit microcode instructions (micro-ops); these are bundled

together into sets of four (quads) and terminated with a sequence

word. The sequence word is a 32-bit command word which instructs

the microcode engine what to do next. The microcode engine also

utilizes branch delay slots for these sequence words, meaning that a

specified branch won't occur until _after _execution of the next quad.

The specification, format, and semantics of the microcode

instructions and sequence words are all undocumented. We spent a

lot of time working on reverse engineering this information (both

before and after gaining code execution), but much work remains and

there’s a chance some bits may never be fully understood. Keep this in

mind when reviewing our results and tools – there are likely pieces we

Google Bug Hunters

https://en.wikipedia.org/wiki/Delay_slot#Branch_delay_slots
https://bughunters.google.com/
https://bughunters.google.com/

have misunderstood, but it will get better with more time and

collaboration.

As a simple example, our current disassembly of the microcode

instructions related to the Retbleed patch are listed below. This is one

of the few microcode patches where AMD published any details on

what the patch does:

AMD "Zen 2" CPUs support a configuration bit in MSR

C001_10E3 (DE_CFG2) which changes the behavior of the

decode block when the processor attempts to predict a

branch on a non-branch instruction (BTC-NOBR case). When

bit 1 (SuppressBPOnNonBr) is set the branch prediction

information on non-branch instructions is ignored and no

speculation at the predicted target will be observed. Setting

this bit mitigates the risk of potential information disclosure as

a result of speculation in the BTC-NOBR case.

Some systems with recent microcode updates installed may

already have this MSR bit set to 1.

Fig. 10. A disassembled view of the microcode patch released by AMD

to mitigate the Retbleed vulnerability

For this microcode patch, we believe it is executed upon completion

of the microcode update routine itself and thus does not hook a

specific instruction or microcode ROM address. The first micro-op

Google Bug Hunters

https://comsec.ethz.ch/research/microarch/retbleed/
https://www.amd.com/content/dam/amd/en/documents/resources/technical-guidance-for-mitigating-branch-type-confusion.pdf
https://github.com/platomav/CPUMicrocodes/blob/0799c8b6d3f45c6c4438afea02846d2b2e244b0c/AMD/cpu00830F10_ver08301055_2022-02-15_65A2763D.bin
https://bughunters.google.com/
https://bughunters.google.com/

reads memory from offset 0x264 in segment 5 (an internal microcode

memory region) and stores it in the microcode temporary register t8.

The second micro-op does a bitwise OR of register t8 with 0x0002.

The third instruction writes the updated value of register t8 back to

memory segment 5 at offset 0x264. Finally, the last instruction is a no-

op. In this example, we don't fully understand the sequence word. Put

together, this sequence appears to mimic the description in AMD’s

security bulletin – it sets the SuppressBPOnNonBr bit in the DE_CFG2

MSR (implemented in microcode memory) when loaded.

An unrelated but more complex sequence in the same microcode

patch is shown below. From this, you can begin to see the extent and

limitations of our reverse engineering progress as well as a hint of

what’s possible in microcode. Here we see the ROM address 0x111A

being hooked – we currently don't know what was originally

implemented at this address. The first basic block appears to perform

a bitwise AND on a temporary register and conditionally branch based

on the result. Unfortunately, we don't have access to the original ROM

so it is difficult to understand what content this register is expected to

contain. The conditional branch is also interesting since it jumps to

another patch quad at 0x1FCD; otherwise, the remaining two

instructions execute before falling through to the same second quad.

The other conditional branch jumps to the ROM address 0x041E and

we see a follow-on connection to 0x042A – this is based on our

understanding of the original sequence word (0x12042A) and the

delay slot branch mechanics.

Google Bug Hunters

https://bughunters.google.com/
https://bughunters.google.com/

Fig. 11. A more complex example of a sequence in a microcode patch

released by AMD

Zentool: Putting all the Pieces

Together

Now that we have examined the vulnerability that enables arbitrary

microcode patches to be installed on all (un-patched) Zen 1 through

Zen 4 CPUs, let's discuss how you can use and expand our tools to

author your own patches. We have been working on developing a

collection of tools combined into a single project we’re calling zentool.

The long-term goal is to provide a suite of capabilities similar to

binutils, but targeting AMD microcode instead of CPU machine code.

You can find the project source code here along with documentation

on how to use the tools.

Google Bug Hunters

https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#zentool-putting-all-the-pieces-together
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#zentool-putting-all-the-pieces-together
https://github.com/google/security-research/tree/master/pocs/cpus/entrysign/zentool
https://bughunters.google.com/
https://bughunters.google.com/

The zentool suite consists of tools for microcode patch examination

including limited disassembly, microcode patch authoring using a

limited amount of reverse engineered assembly, microcode patch

signing, and microcode patch loading. We plan to also release details

on how to decrypt and encrypt microcode patches in the future. A

significant portion of the ongoing research is focused on building an

accurate understanding of the AMD microcode instruction set – the

current disassembly and assembly are not always accurate due to this

challenge.

Let’s walk through some brief examples of using the tool; for more in-

depth information, please refer to the documentation in the zentool

repository. Previously, we released a proof-of-concept microcode

patch which hooked the RDRAND instruction and changed its

behavior so that it always returns 4 (or sometimes returns 5 as one

observant person noted). Here are the steps needed to reproduce this

custom AMD microcode patch:

1. Clone the zentool repo and build the tools. Additionally, you need

to construct a donor microcode patch. This is done by taking an

official microcode patch for our current CPU and stripping out all

of the original patch contents.

$ git clone https://github.com/google/secu
rity-research.git
$ cd security-research/pocs/cpus/entrysig
n/zentool
$ make all template.bin

2. Replace the donor patch contents with the necessary changes to

replace RDRAND’s implementation.

Google Bug Hunters

https://github.com/google/security-research/issues/159
https://www.felixcloutier.com/x86/rdrand
https://bughunters.google.com/
https://bughunters.google.com/

$./zentool -o rdrand.bin edit --match 0=@
rdrand --seq 0=0x100002 --insn q0i0="mov.q
s rax,rax,4" template.bin

An explanation of the required arguments:

--o rdrand.bin: This instructs zentool to save the result
into a new file.

edit: This selects the edit subcommand which is used to
modify the microcode patch contents.

--match 0=@rdrand: This changes match register 0 to point
to the entry point of RDRAND in the microcode ROM. The
match registers direct the microcode sequencer when to
execute instructions in patch RAM instead of ROM. We have
identified a limited number of associations between
instructions and ROM addresses, see matchscan.sh for
details.

--seq 0=0x100002: This sets the sequence word for the
first two instruction quads to the value 7. This essentially
instructs the microcode sequencer to return back to the
next x86 instruction after the micro-ops in these quads have
executed.

--insn q0i0="mov.qs rax,rax,4": This specifies the
microcode instruction to place at quad 0, instruction slot 0.
The mov operation will store the value 4 in the x86 register
RAX. The q suffix indicates that the value is a 64-bit QWORD
and the s suffix indicates that RFLAGS should be set based
on the operation.

(Note: This example has been simplified to only set RAX and does

not set the carry flag as expected by a successful RDRAND

execution.)

3. This command takes the modified microcode patch file and signs

it using our fake RSA key as described in the previous sections. At

this point, CPUs without the EntrySign fix can not discern this

patch from any authentic AMD microcode patch.

Google Bug Hunters

https://bughunters.google.com/
https://bughunters.google.com/

$./zentool resign rdrand.bin

4. This command simply loads the RDRAND patch on a specific CPU

using the standard WRMSR technique:

$ sudo ./zentool load --cpu=2 rdrand.bin

Writing and running a simple program that executes the RDRAND

instruction will demonstrate that the instruction always returns 4.

#include <stdbool.h>
#include <stdio.h>
int main(void)
{
 unsigned long r;
 bool ok = false;
 asm volatile(
 "rdrand %0\n\t"
 "setc %1"
 : "=a"(r), "+r"(ok));
 printf("ok? %u, val %#lx\n", ok, r);
}

You may want to use the taskset Linux program to force

execution on the patched core as well as the isolcpus kernel

command line option to prevent other jobs from running on the

patched CPU.

Google Bug Hunters

https://bughunters.google.com/
https://bughunters.google.com/

$ gcc rdrand.c -o rdrand

Normal operation
$ taskset -c 0 ./rdrand
ok? 1, val 0xda8cb8920d9e381c

Patched operation
$ taskset -c 2 ./rdrand
ok? 0, val 0x4

Future Work

We hope you now have a better understanding of AMD’s microcode

and how flaws in their signature verification scheme led to a

breakdown in trust for microcode patches. Luckily, the security impact

was limited by the fact that attackers must first obtain host ring 0

access in order to attempt to install a microcode patch and that these

patches do not persist through a power cycle. Confidential computing

using SEV-SNP, DRTM using SKINIT, and supply chain modification are

some of the situations where the threat model permits an attacker to

subvert microcode patches. We have examined AMD’s patch and

believe it remediates the signature verification vulnerability.

Beyond the security impact, we are looking forward to seeing what

the security (and non-security!) research community can produce

with this new capability. Previous research on Intel microcode has

demonstrated the ability to craft new instructions to implement

security features similar to ARM’s pointer authentication codes,

accessing internal CPU buffers, tracing microcode, and more. Today

we have published our main tool suite, zentool, which enables

researchers to begin examining microcode patches and creating their

own; bug reports and contributions are welcome. Additional reverse

engineering and testing is required to begin to fully understand the

Google Bug Hunters

https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#future-work
https://bughunters.google.com/blog/5424842357473280/zen-and-the-art-of-microcode-hacking#future-work
https://pietroborrello.com/talk/custom-processing-unit-offensivecon/offensivecon_ucode.pdf
https://bughunters.google.com/
https://bughunters.google.com/

AMD microcode instruction set and data interfaces and we plan to

publish additional research and tools in the coming months as our

work progresses.

BACK TO OVERVIEW

Privacy Terms About Google Google Products  Help

Google Bug Hunters

https://bughunters.google.com/blog
https://www.google.com/
https://policies.google.com/privacy
https://www.google.com/intl/en/policies/terms/
https://www.google.com/about/
https://www.google.com/about/products/
https://support.google.com/
https://bughunters.google.com/

