One Token to rule them all -
obtaining Global Admin in every
Entra ID tenant via Actor tokens

While preparing for my Black Hat and DEF CON talks in July of this year, | found the most
impactful Entra ID vulnerability that | will probably ever find. This vulnerability could have
allowed me to compromise every Entra ID tenant in the world (except probably those in
national cloud deployments'). If you are an Entra ID admin reading this, yes that means
complete access to your tenant. The vulnerability consisted of two components:
undocumented impersonation tokens, called “Actor tokens”, that Microsoft uses in their
backend for service-to-service (S2S) communication. Additionally, there was a critical flaw in
the (legacy) Azure AD Graph API that failed to properly validate the originating tenant,
allowing these tokens to be used for cross-tenant access.

Effectively this means that with a token | requested in my lab tenant | could authenticate as
any user, including Global Admins, in any other tenant. Because of the nature of these Actor
tokens, they are not subject to security policies like Conditional Access, which means there
was no setting that could have mitigated this for specific hardened tenants. Since the Azure
AD Graph APl is an older API for managing the core Azure AD / Entra ID service, access to
this API could have been used to make any modification in the tenant that Global Admins
can do, including taking over or creating nhew identities and granting them any permission in
the tenant. With these compromised identities the access could also be extended to
Microsoft 365 and Azure.

| reported this vulnerability the same day to the Microsoft Security Response Center (MSRC).
Microsoft fixed this vulnerability on their side within days of the report being submitted and
has rolled out further mitigations that block applications from requesting these Actor tokens
for the Azure AD Graph API. Microsoft also issued CVE-2025-55241 (https://msrc.microsoft.com/
update-guide/vulnerability/CVE-2025-55241) for this vulnerability.

Impact

These tokens allowed full access to the Azure AD Graph API in any tenant. Requesting Actor
tokens does not generate logs. Even if it did they would be generated in my tenant instead of
in the victim tenant, which means there is no record of the existence of these tokens.

Furthermore, the Azure AD Graph API does not have API level logging. Its successor, the
Microsoft Graph, does have this logging, but for the Azure AD Graph this telemetry source is
still in a very limited preview and I’m not aware of any tenant that currently has this available.

Since there is no API level logging, it means the following Entra ID data could be accessed
without any traces:

¢ User information including all their personal details stored in Entra ID.

e Group and role information.

¢ Tenant settings and (Conditional Access) policies.

¢ Applications, Service Principals, and any application permission assignment.

¢ Device information and BitLocker keys synced to Entra ID.

This information could be accessed by impersonating a regular user in the victim tenant. If
you want to know the full impact, my tool roadrecon (https:/github.com/dirkjanm/ROADtools) USES

the same API, if you run it then everything you find in the GUI of the tool could have been
accessed and modified by an attacker abusing this flaw.

If a Global Admin was impersonated, it would also be possible to modify any of the above
objects and settings. This would result in full tenant compromise with access to any service
that uses Entra ID for authentication, such as SharePoint Online and Exchange Online. It
would also provide full access to any resource hosted in Azure, since these resources are
controlled from the tenant level and Global Admins can grant themselves rights on Azure
subscriptions. Modifying objects in the tenant does (usually) result in audit logs being
generated. That means that while theoretically all data in Microsoft 365 could have been
compromised, doing anything other than reading the directory information would leave audit
logs that could alert defenders, though without knowledge of the specific artifacts that
modifications with these Actor tokens generate, it would appear as if a legitimate Global
Admin performed the actions.

Based on Microsoft’s internal telemetry, they did not detect any abuse of this vulnerability. If
you want to search for possible abuse artifacts in your own environment, a KQL detection is
included at the end of this post.

Technical details
Actor tokens

Actor tokens are tokens that are issued by the “Access Control Service”. | don’t know the
exact origins of this service, but it appears to be a legacy service that is used for
authentication with SharePoint applications and also seems to be used by Microsoft
internally. | came across this service while investigating hybrid Exchange setups. These
hybrid setups used to provision a certificate credential on the Exchange Online Service
Principal (SP) in the tenant, with which it can perform authentication. These hybrid attacks

were the topic of some talks | did this summer, the slides are on the talks page. In this case
the hybrid part is not relevant, as in my lab | could also have added a credential on the
Exchange Online SP without the complete hybrid setup. Exchange is not the only app which
can do this, but since | found this in Exchange we will keep talking about these tokens in the
context of Exchange.

Exchange will request Actor tokens when it wants to communicate with other services on
behalf of a user. The Actor token allows it to “act” as another user in the tenant when talking
to Exchange Online, SharePoint and as it turns out the Azure AD Graph. The Actor token (a
JSON Web Token / JWT) looks as follows when decoded:

"RS256",

" jNwjeSnvTTK8XEdr5QUPkBRLLo",
"IWT",

" jNwjeSnvTTK8XEdr5QUPKBRLLo"

"aud": "00000002-0000-0000-Cc000-000000000000/graph.windows.net@6287+28f-4f7f-4322-9651-
a8697d8felbc”,

"exp": 1752593816,

"iat": 1752507116,

"identityprovider”: "00000001-0000-0000-C000-000000000000@6287128f-4f7+-4322-9651-
a8697d8felbc”,

"iss": "00000001-0000-0000-C000-000000000000@6287F28F-4171-4322-9651-a8697d8felbc",

"nameid": "©0000LV2-0000-0ff1-cebD-00000000VVOOE6287 1281 -4171-4322-9651-a8697d8felbc”,

"nbf": 1752507116,

"oid": "a761cbb2-fbb6-4c80-aa50-504962316eb2",

"rh": "1.AXQAj_KHYnNSPIKOWUahpfY_ hvATIAAAAAAAAAWAAAAAAAAACAQBOAA. ",

"sub": "a761cbb2-fbb6-4c80-aa50-504962316eb2",

"trustedfordelegation”: "true",

"xms_spcu”: "true”

}.[signature from Entra ID]

There are a few fields here that differ from regular Entra ID access tokens:

The aud field contains the GUID of the Azure AD Graph API, as well as the URL
graph.windows.net and the tenant it was issued 10 6287f28f-4f7f-4322-9651-a8697d8felbc .

The expiry is exactly 24 hours after the token was issued.

The iss contains the GUID of the Entra ID token service itself, called “Azure ESTS
Service”, and again the tenant GUID where it was issued.

The token contains the claim trustedfordelegation , Which is True in this case, meaning
we can use this token to impersonate other identities. Many Microsoft apps could
request such tokens. Non-Microsoft apps requesting an Actor token would receive a
token with this field set to ralse instead.

When using this Actor token, Exchange would embed this in an unsigned JWT that is then
sent to the resource provider, in this case the Azure AD graph. In the rest of the blog | call
these impersonation tokens since they are used to impersonate users.

"actortoken": "eyJ@eXAiOiJKV1Qi<snip>TxeLkNB8v2riWWMLGpaAaFJ1lhA",

"aud": "00000002-0000-0000-Cc000-000000000000/graph.windows.net@6287+28f-4f7f-4322-9651-
a8697d8felbc”,

"exp": 1756926566,

"iat": 1756926266,

"iss": "00000002-0000-01f1-ce00-00000000000OE6287F28F-4171-4322-9651-a8697d8felbc",

"nameid": "10032001E2CBE43B",

"nbf": 1756926266,

"nii": "urn:federation:MicrosoftOnline”,

"sip": "doesnt@matter.com"”,

"smtp": "doesnt@matter.com”,

"upn": "doesnt@matter.com"

}.[no signature]

The sip, smtp, upn fields are used when accessing resources in Exchange online or
SharePoint, but are ignored when talking to the Azure AD Graph, which only cares about the
nameid . This nameid originates from an attribute of the user that is called the netzd on the
Azure AD Graph. You will also see it reflected in tokens issued to users, in the puid claim,
which stands for Passport UID. | believe these identifiers are an artifact from the original
codebase which Microsoft used for its Microsoft Accounts (consumer accounts or MSA).
They are still used in Entra ID, for example to map guest users to the original identity in their
home tenant.

As | mentioned before, these impersonation tokens are not signed. That means that once
Exchange has an Actor token, it can use the one Actor token to impersonate anyone against
the target service it was requested for, for 24 hours. In my personal opinion, this whole Actor
token design is something that never should have existed. It lacks almost every security
control that you would want:

There are no logs when Actor tokens are issued.

Since these services can craft the unsigned impersonation tokens without talking to
Entra ID, there are also no logs when they are created or used.

They cannot be revoked within their 24 hours validity.

They completely bypass any restrictions configured in Conditional Access.

We have to rely on logging from the resource provider to even know these tokens were
used in the tenant.

Microsoft uses these tokens to talk to other services in their backend, something that
Microsoft calls service-to-service (S2S) communication. If one of these tokens leaks, it can
be used to access all the data in an entire tenant without any useful telemetry or mitigation.
In July of this year, Microsoft did publish a blog (https://www.microsoft.com/en-us/security/

blog/2025/07/08/enhancing-microsoft-365-security-by-eliminating-high-privilege-access/) about removing

these insecure legacy practices from their environment, but they do not provide any
transparency about how many services still use these tokens.

The fatal flaw leading to cross-tenant
compromise

As | was refining my slide deck and polished up my proof-of-concept code for requesting
and generating these tokens, | tested more variants of using these tokens, changing various
fields to see if the tokens still worked with the modified information. As one of the tests |
changed the tenant ID of the impersonation token to a different tenant in which none of my
test accounts existed. The Actor tokens tenant ID was my iminyour.cloud tenant, with tenant
ID 6287f28f-4f7f-4322-9651-a8697d8felbc and the unsigned JWT generated had the tenant ID
b9fb93c1-c0c8-4580-99f3-d1b540cada32 .

Signed Actor token from tenant A

"actortoken": "eyJ0eXAi101JKV1QiLCJIhbGci101JSUzI1IN1IsIng1dCI6I19qTndqZVNudlRUSZhYRWRYNVFVUGtCUkxM
WMDAVZ3JhcGgud21uZG93cy5uZXRANFI4N2YYOGYENGY3Z100MzIyLTK2NTELYTg20TdkOGZIMWI jIiwiaXNzIjoiMDAWMDAWM

zZExNiwibmImIjoxNzUyNTA3MTE2LCI1eHALTOFE3NTI10TM4MTYsImlkZW50aXR5cHIvdm1kZXI 101 IwMDAWMDAWMSOWMDAWLTA
WMCOWZMYXLWNLMDAtMDAWMDAWMDAWMDAWQDYYODAmMFhmLTRMN2Y tNDMyM105NJUXLWEAN jk3ZDhmZTF1YyIsIm9pZCI6IME3N
UFBQUFBQUFBQ3RBUUIWQUEUTiwic3ViIjoiYTc2ZMWNiYJItZmIiN10OYZzgwLWFhNTAtNTAGOTYYMZE2ZWIyIiwidHI1c3R1ZGZ
sQwW5MYeNE3FuYOPis0yJB7JJFEOztLBzIcyuQKToxGG18sFILQZNVWBWGIb4LmuttoJAse3hm5s_eUxycwCcQaSXbmzvpZMG_Q
RxG2InkIyh-c71HUzZHph96qURAC HvQeTF1b4fBi13sWsgQOAzZdEYLXTxeLkNB8v2rWWMLGpaAaFJLlhA",
aud": "00000002-0000-0000-cOOO-0PBO00000000/graph.windows.netEb9fb93c1-cOc8-4580-95F3-d1b540cada32]',
"exp": 1757442921,

"{ss": "0OOOEEO2-0000-0ff1-ce00-000000000000@b9fbo3c1-cOc8-4580-99f3-d1b540cada32’,
"nameid": "10032001E2CBE43B",

¢ 1757442621,

: "urn:federation:MicrosoftOnline",

: "doesnt@matter.com",
: "doesnt@matter.com",
: "doesnt@matter.com"

| sent this token to graph.windows.net using my CLI tool roadtx , expecting a generic access
denied since | had a tenant ID mismatch. However, | was instead greeted by a curious error
message:

((ROADtools) X python getimpersonationtoken.py dirkjan@iminyour.cloud 1003200087D335D0
Generating impersonation token for dirkjan@iminyour.cloud @ 00000002 -0000-0000-CO00-000000000000/graph.windows.net@9fb93cl-c0c8-4580-99f3-d1b540cada32
X roadtx graphrequest 'https://graph.windows.net/myorganization/policies?api-version=1.61-internal’

hentication_Unauthorized",

: "en”,
": "User was not found."

1f79537b-a610-4547-826a-c9c966073672",
5-07-14T13:19:45"

Note that these are the actual screenshots | made during my research, which is why the
formatting may not work as well in this blog

The error message suggested that while my token was valid, the identity could not be found
in the tenant. Somehow the APl seemed to accept my token even with the mismatching
tenant. | quickly looked up the net1id of a user that did exist in the target tenant, crafted a
token and the Azure AD Graph happily returned the data | requested. | tested this in a few
more test tenants | had access to, to make sure | was not crazy, but | could indeed access
data in other tenants, as long as | knew their tenant ID (which is public information) and the
netid Of a user in that tenant.

To demonstrate the vulnerability, here | am using a Guest user in the target tenant to query
the net1d of a Global Admin. Then | impersonate the Global Admin using the same Actor
token, and can perform any action in the tenant as that Global Admin over the Azure AD
Graph.

First | craft an impersonation token for a Guest user in my victim tenant:

(ROADtools) X python getimpersonationtoken.py dirkjan@iminyour.cloud 100320018622FDO8
Targeting tenant e408897f-9dd3-445d-b78d-%9eaab9227cb4

Generating impersonation token for 100320018622FDO8 @ 00000002 -0000-0000-COOO-0OOBOEOEOE00/graph.windows.net@e408897F-9dd3-445d-b78d-9eaab9227cb4

| use this token to query the net1d of a Global Admin:

(ROADtools) X roadtx graphrequest 'https://graph.windows.net/myorganization/users/cloudadmingonprem.outsider.training?api-version=1.61-internal|

{
"odata.metadata": "https://graph.windows.net/myorganization/$metadata#directoryObjects/@Element”,

"odata.type": "Microsoft.DirectoryServices.User",
"userPrincipalName”: "cloudadmin@onprem.outsider.training”,
"netId": "10032004208AF571"

Then | create an impersonation token for this Global Admin (the UPN is kept the same since
it is not validated by the API):

(ROADtools) X python getimpersonationtoken.py dirkjan@iminyour.cloud 10032084208AF571
Targeting tenant e408897f-9dd3-445d-b78d-%9eaab%9227cb4

Generating impersonation token for 10032004288AF571 @ 000GEB02-00E80-0000-COHOD-0080000000008/graph.windows.net@e408897f-9dd3-445d-b78d-9eaab9227cb4

And finally this token is used to access the tenant as the Global Admin, listing the users,
something the guest user was not able to do:

(ROADtooOls) X roadtx graphrequest 'https://graph.windows.net/myorganization/users?api-version=1.61-internal&S$select=userPrincipalName,netId’

"odata.metadata": "https://graph.windows.net/myorganization/$metadatas#directoryobjects”,
"value": [

"odata.type": "Microsoft.Directoryservices.User",

| can even run roadrecon with this impersonation token, which queries all Azure AD Graph
APl endpoints to enumerate the available information in the tenant.

(RDOADtools) X roadrecon gather --mfa -d roadrecon_at.db
Starting data gathering phase 1 of 2 (collecting objects)

Starting data gathering phase 2 of 2 (collecting properties and relationships)
ROADrecon gather executed in 7.87 seconds and issued 1218 HTTP requests.

None of these actions would generate any logs in the victim tenant.

Practical abuse

With this vulnerability it would be possible to compromise any Entra ID tenant. Starting with
an Actor token from an attacker controlled tenant, the following steps would lead to full
control over the victim tenant:

1. Find the tenant ID for the victim tenant, this can be done using public APls based on
the domain name.

2. Find a valid net1d of a regular user in the tenant. Methods for this will be discussed
below.

3. Craft an impersonation token with the Actor token from the attacker tenant, using the
tenant ID and net1d of the user in the victim tenant.

4. List all Global Admins in the tenant and their netid .
5. Craft an impersonation token for the Global Admin account.

6. Perform any read or write action over the Azure AD Graph API.

If an attacker makes any modifications in the tenant in step 6, that would be the only event in
this chain that generates any telemetry in the victim tenant. An attacker could for example
create new user accounts, grant these Global Admin privileges and then sign in interactively
to any Entra ID, Microsoft 365 or third party application that integrates with the victim tenant.
Alternatively they could add credentials on existing applications, grant these apps API
permissions and use that to exfiltrate emails or files from Microsoft 365, a technique that is
popular among threat actors. An attacker could also add credentials to Microsoft Service

Principals (https:/dirkjanm.io/azure-ad-privilege-escalation-application-admin/) in the victim tenant,

several of which can request Actor tokens that allow impersonation against SharePoint or

Exchange. For my DEF CON and Black Hat talks | made a demo video about using these
Actor tokens to obtain Global Admin access. The video uses Actor tokens within a tenant,
but the same technique could have been applied to any other tenant by abusing this
vulnerability.

Q’ ~/ROADEools/pocs/addback

! user@ubuntu:~/ROADtools/pocs
. (ROADtools)

=

user@ubuntu:~/ROADEools/pocs

user@ubuntu:~/ROADtoOIs/pocs 131x42

0:00/0:45 of) ey =3

Finding netlds

Since tenant IDs can be resolved when the domain name of a tenant is known, the only
identifier that is not immediately available to the attacker is a valid net1d for a user in that
specific tenant. As | mentioned above, these IDs are added to Entra ID access tokens as the
puid claim. Any token found online, in screenshots, examples or logs, even those that are
long expired or with an obfuscated signature, would provide an attacker with enough
information to breach the tenant. Threat actors that still have old tokens for any tenant from
previous breaches can immediately access those tenants again as long as the victim
account still exists.

The above is probably not a very common occurrence. What is a more realistic attack is
simply brute-forcing the net1d . Unlike object IDs, which are randomly generated, netlds are
actually incremental. Looking at the differences in netlds between my tenant and those of
some tenants | analyzed, | found the difference between a newly created user in my tenant
and their newest user to be in the range of 100.000 to 100 million. Simply brute forcing the
netld could be accomplished in minutes to hours for any target tenant, and the more user
exist in a tenant the easier it is to find a match. Since this does not generate any logs it isn’t
a noisy attack either. Because of the possibility to brute force these netlds | would say this
vulnerability could have been used to take over any tenant without any prerequisites. There is
however a third technique which is even more effective (and more fun from a technical level).

Compromising tenants by hopping over
B2B trusts

| previously mentioned that a users net1d is used to establish links between a user account
in multiple tenants. This is something that | researched a few years ago when | gave a talk at
Black Hat USA 22 about external identities. The below screenshot is taken from one of my
slides, which illustrates this:

®
dh
Home tenant account
« netld
Tenant A Tenant B
Resource tenant Home tenant

The way this works is as follows. Suppose we have tenant A and tenant B. A user in tenant B
is invited into tenant A. In the new guest account that is created in tenant A, their netid is
stored on the alternativeSecurityIds attribute. That means that an attacker wanting to abuse
this bug can simply read that attribute in tenant A, put it in an impersonation token for tenant
B and then impersonate the victim in their home tenant. It should be noted that this works
against the direction of invite. Any user in any tenant where you accept an invite will be
able to read your netid , and with this bug could have impersonated you in your home
tenant. In your home tenant you have a full user account, which can enumerate other users.
This is not a bug or risk with B2B trusts, but is simply an unintended consequence of the
B2B design mechanism. A guest account in someone else’s tenant would also be sufficient
with the default Entra ID guest settings because the default settings allow users to query the
netld Of a user as long as the UPN is known.

To abuse this, a threat actor could perform the following steps, given that they have access
to at least one tenant with a guest user:

1. Query the guest users and their alternativesecurityIds attribute which gives the netid.

2. Query the tenant ID of the guest users home tenant based on the domain name in their
UPN.

3. Create an impersonation token, impersonating the victim in their home tenant.
4. Optionally list Global Admins and impersonate those to compromise the entire tenant.

5. Repeat step 1 for each tenant that was compromised.

The steps above can be done in 2 API calls per tenant, which do not generate any logs. Most
tenants will have guest users from multiple distinct other tenants. This means the number of
tenants you compromise with this scales exponentially and the information needed to
compromise the majority of all tenants worldwide could have been gathered within minutes
using a single Actor token. After at least 1 user is known per victim tenant, the attacker can
selectively perform post-compromise actions in these tenants by impersonating Global
Admins.

Looking at the list of guest users in the tenants of some of my clients, this technique would
be extremely powerful. | also observed that one of the first tenants you will likely compromise
is Microsoft’s own tenant, since Microsoft consultants often get invited to customer tenants.
Many MSPs and Microsoft Partners will have a guest account in the Microsoft tenant, so
from the Microsoft tenant a compromise of most major service provider tenants is one step
away.

Needless to say, as much as | would have liked to test this technique in practice to see how
fast this would spread out, | only tested the individual steps in my own tenants and did not
access any data I’'m not authorized to.

Detection

While querying data over the Azure AD Graph does not leave any logs, modifying data does
(usually) generate audit logs. If modifications are done with Actor tokens, these logs look a
bit curious.

Initiated by (actor)

Type User

Display Name Office 365 Exchange Online

Object ID 6e2605ch-2394-48f6-bd74-2e8108759981
IP address _

User Principal Name cloudadmin@onprem.outsider.training

Since Actor tokens involve both the app and the user being impersonated, it seems Entra ID
gets confused about who actually made the change, and it will log the UPN of the
impersonated Global Admin, but the display name of Exchange. Luckily for defenders this
creates a nice giveaway when Actor tokens are used in the tenant. After some testing and
filtering with some fellow researchers that work on the blue side (thanks to Fabian Bader and
Olaf Hartong) we came up with the following detection query:

AuditlLogs

| where not(OperationName has "group")

| where not(OperationName == "Set directory feature on tenant™)

| where InitiatedBy has "user™

| where InitiatedBy.user.displayName has_any ("Office 365 Exchange
Online", "Skype for Business Online", "Dataverse", "Office 365 SharePoint
Online", "Microsoft Dynamics ERP")

The exclusion for group operations is there because some of these products do actually use
Actor tokens to perform operations on your behalf. For example creating specific groups via
the Exchange Online PowerShell module will make Exchange use an Actor token on your
behalf and create the group in Entra ID.

Conclusion

This blog discussed a critical token validation failure in the Azure AD Graph API. While the
vulnerability itself was a bad oversight in the token handling, the whole concept of Actor
tokens is a protocol that was designed to behave with all the properties mentioned in the
paragraphs above. If it weren’t for the complete lack of security measures in these tokens, |
don’t think such a big impact with such limited telemetry would have been possible.

Thanks to the people at MSRC who immediately picked up the vulnerability report, searched
for potential variants in other resources, and to the engineers who followed up with fixes for
the Azure AD Graph and blocked Actor tokens for the Azure AD Graph API requested with
credentials stored on Service Principals, essentially restricting the usage of these Actor
tokens to only Microsoft internal services.

Disclosure timeline

e July 14, 2025 - reported issue to MSRC.

e July 14, 2025 - MSRC case opened.

e July 15, 2025 - reported further details on the impact.

e July 15, 2025 - MSRC requested to halt further testing of this vulnerability.
e July 17, 2025 - Microsoft pushed a fix for the issue globally into production.
e July 23, 2025 - Issue confirmed as resolved by MSRC.

e August 6, 2025 - Further mitigations pushed out preventing Actor tokens being issued
for the Azure AD Graph with SP credentials.

e September 4, 2025 - CVE-2025-55241 (https://msrc.microsoft.com/update-guide/vulnerability/
CVE-2025-55241) issued.

e September 17, 2025 - Release of this blogpost.

